Metamath Proof Explorer


Theorem ngpds

Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds.n N=normG
ngpds.x X=BaseG
ngpds.m -˙=-G
ngpds.d D=distG
Assertion ngpds GNrmGrpAXBXADB=NA-˙B

Proof

Step Hyp Ref Expression
1 ngpds.n N=normG
2 ngpds.x X=BaseG
3 ngpds.m -˙=-G
4 ngpds.d D=distG
5 eqid DX×X=DX×X
6 1 3 4 2 5 isngp2 GNrmGrpGGrpGMetSpN-˙=DX×X
7 6 simp3bi GNrmGrpN-˙=DX×X
8 7 3ad2ant1 GNrmGrpAXBXN-˙=DX×X
9 8 oveqd GNrmGrpAXBXAN-˙B=ADX×XB
10 ngpgrp GNrmGrpGGrp
11 2 3 grpsubf GGrp-˙:X×XX
12 10 11 syl GNrmGrp-˙:X×XX
13 12 3ad2ant1 GNrmGrpAXBX-˙:X×XX
14 opelxpi AXBXABX×X
15 14 3adant1 GNrmGrpAXBXABX×X
16 fvco3 -˙:X×XXABX×XN-˙AB=N-˙AB
17 13 15 16 syl2anc GNrmGrpAXBXN-˙AB=N-˙AB
18 df-ov AN-˙B=N-˙AB
19 df-ov A-˙B=-˙AB
20 19 fveq2i NA-˙B=N-˙AB
21 17 18 20 3eqtr4g GNrmGrpAXBXAN-˙B=NA-˙B
22 ovres AXBXADX×XB=ADB
23 22 3adant1 GNrmGrpAXBXADX×XB=ADB
24 9 21 23 3eqtr3rd GNrmGrpAXBXADB=NA-˙B