Metamath Proof Explorer


Theorem isngp2

Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses isngp.n N=normG
isngp.z -˙=-G
isngp.d D=distG
isngp2.x X=BaseG
isngp2.e E=DX×X
Assertion isngp2 GNrmGrpGGrpGMetSpN-˙=E

Proof

Step Hyp Ref Expression
1 isngp.n N=normG
2 isngp.z -˙=-G
3 isngp.d D=distG
4 isngp2.x X=BaseG
5 isngp2.e E=DX×X
6 1 2 3 isngp GNrmGrpGGrpGMetSpN-˙D
7 resss DX×XD
8 5 7 eqsstri ED
9 sseq1 N-˙=EN-˙DED
10 8 9 mpbiri N-˙=EN-˙D
11 3 reseq1i DX×X=distGX×X
12 5 11 eqtri E=distGX×X
13 4 12 msmet GMetSpEMetX
14 1 4 3 5 nmf2 GGrpEMetXN:X
15 13 14 sylan2 GGrpGMetSpN:X
16 4 2 grpsubf GGrp-˙:X×XX
17 16 ad2antrr GGrpGMetSpN-˙D-˙:X×XX
18 fco N:X-˙:X×XXN-˙:X×X
19 15 17 18 syl2an2r GGrpGMetSpN-˙DN-˙:X×X
20 19 fdmd GGrpGMetSpN-˙DdomN-˙=X×X
21 20 reseq2d GGrpGMetSpN-˙DEdomN-˙=EX×X
22 4 12 msf GMetSpE:X×X
23 22 ad2antlr GGrpGMetSpN-˙DE:X×X
24 23 ffund GGrpGMetSpN-˙DFunE
25 simpr GGrpGMetSpN-˙DN-˙D
26 ssv V
27 fss N-˙:X×XVN-˙:X×XV
28 19 26 27 sylancl GGrpGMetSpN-˙DN-˙:X×XV
29 fssxp N-˙:X×XVN-˙X×X×V
30 28 29 syl GGrpGMetSpN-˙DN-˙X×X×V
31 25 30 ssind GGrpGMetSpN-˙DN-˙DX×X×V
32 df-res DX×X=DX×X×V
33 5 32 eqtri E=DX×X×V
34 31 33 sseqtrrdi GGrpGMetSpN-˙DN-˙E
35 funssres FunEN-˙EEdomN-˙=N-˙
36 24 34 35 syl2anc GGrpGMetSpN-˙DEdomN-˙=N-˙
37 ffn E:X×XEFnX×X
38 fnresdm EFnX×XEX×X=E
39 23 37 38 3syl GGrpGMetSpN-˙DEX×X=E
40 21 36 39 3eqtr3d GGrpGMetSpN-˙DN-˙=E
41 40 ex GGrpGMetSpN-˙DN-˙=E
42 10 41 impbid2 GGrpGMetSpN-˙=EN-˙D
43 42 pm5.32i GGrpGMetSpN-˙=EGGrpGMetSpN-˙D
44 df-3an GGrpGMetSpN-˙=EGGrpGMetSpN-˙=E
45 df-3an GGrpGMetSpN-˙DGGrpGMetSpN-˙D
46 43 44 45 3bitr4i GGrpGMetSpN-˙=EGGrpGMetSpN-˙D
47 6 46 bitr4i GNrmGrpGGrpGMetSpN-˙=E