Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isngp.n | |
|
isngp.z | |
||
isngp.d | |
||
isngp2.x | |
||
isngp2.e | |
||
Assertion | isngp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isngp.n | |
|
2 | isngp.z | |
|
3 | isngp.d | |
|
4 | isngp2.x | |
|
5 | isngp2.e | |
|
6 | 1 2 3 | isngp | |
7 | resss | |
|
8 | 5 7 | eqsstri | |
9 | sseq1 | |
|
10 | 8 9 | mpbiri | |
11 | 3 | reseq1i | |
12 | 5 11 | eqtri | |
13 | 4 12 | msmet | |
14 | 1 4 3 5 | nmf2 | |
15 | 13 14 | sylan2 | |
16 | 4 2 | grpsubf | |
17 | 16 | ad2antrr | |
18 | fco | |
|
19 | 15 17 18 | syl2an2r | |
20 | 19 | fdmd | |
21 | 20 | reseq2d | |
22 | 4 12 | msf | |
23 | 22 | ad2antlr | |
24 | 23 | ffund | |
25 | simpr | |
|
26 | ssv | |
|
27 | fss | |
|
28 | 19 26 27 | sylancl | |
29 | fssxp | |
|
30 | 28 29 | syl | |
31 | 25 30 | ssind | |
32 | df-res | |
|
33 | 5 32 | eqtri | |
34 | 31 33 | sseqtrrdi | |
35 | funssres | |
|
36 | 24 34 35 | syl2anc | |
37 | ffn | |
|
38 | fnresdm | |
|
39 | 23 37 38 | 3syl | |
40 | 21 36 39 | 3eqtr3d | |
41 | 40 | ex | |
42 | 10 41 | impbid2 | |
43 | 42 | pm5.32i | |
44 | df-3an | |
|
45 | df-3an | |
|
46 | 43 44 45 | 3bitr4i | |
47 | 6 46 | bitr4i | |