Metamath Proof Explorer


Theorem isngp3

Description: The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses isngp.n N=normG
isngp.z -˙=-G
isngp.d D=distG
isngp2.x X=BaseG
Assertion isngp3 GNrmGrpGGrpGMetSpxXyXxDy=Nx-˙y

Proof

Step Hyp Ref Expression
1 isngp.n N=normG
2 isngp.z -˙=-G
3 isngp.d D=distG
4 isngp2.x X=BaseG
5 eqid DX×X=DX×X
6 1 2 3 4 5 isngp2 GNrmGrpGGrpGMetSpN-˙=DX×X
7 4 3 msmet2 GMetSpDX×XMetX
8 1 4 3 5 nmf2 GGrpDX×XMetXN:X
9 7 8 sylan2 GGrpGMetSpN:X
10 4 2 grpsubf GGrp-˙:X×XX
11 10 adantr GGrpGMetSp-˙:X×XX
12 fco N:X-˙:X×XXN-˙:X×X
13 9 11 12 syl2anc GGrpGMetSpN-˙:X×X
14 13 ffnd GGrpGMetSpN-˙FnX×X
15 7 adantl GGrpGMetSpDX×XMetX
16 metf DX×XMetXDX×X:X×X
17 ffn DX×X:X×XDX×XFnX×X
18 15 16 17 3syl GGrpGMetSpDX×XFnX×X
19 eqfnov2 N-˙FnX×XDX×XFnX×XN-˙=DX×XxXyXxN-˙y=xDX×Xy
20 14 18 19 syl2anc GGrpGMetSpN-˙=DX×XxXyXxN-˙y=xDX×Xy
21 opelxpi xXyXxyX×X
22 fvco3 -˙:X×XXxyX×XN-˙xy=N-˙xy
23 11 21 22 syl2an GGrpGMetSpxXyXN-˙xy=N-˙xy
24 df-ov xN-˙y=N-˙xy
25 df-ov x-˙y=-˙xy
26 25 fveq2i Nx-˙y=N-˙xy
27 23 24 26 3eqtr4g GGrpGMetSpxXyXxN-˙y=Nx-˙y
28 ovres xXyXxDX×Xy=xDy
29 28 adantl GGrpGMetSpxXyXxDX×Xy=xDy
30 27 29 eqeq12d GGrpGMetSpxXyXxN-˙y=xDX×XyNx-˙y=xDy
31 eqcom Nx-˙y=xDyxDy=Nx-˙y
32 30 31 bitrdi GGrpGMetSpxXyXxN-˙y=xDX×XyxDy=Nx-˙y
33 32 2ralbidva GGrpGMetSpxXyXxN-˙y=xDX×XyxXyXxDy=Nx-˙y
34 20 33 bitrd GGrpGMetSpN-˙=DX×XxXyXxDy=Nx-˙y
35 34 pm5.32i GGrpGMetSpN-˙=DX×XGGrpGMetSpxXyXxDy=Nx-˙y
36 df-3an GGrpGMetSpN-˙=DX×XGGrpGMetSpN-˙=DX×X
37 df-3an GGrpGMetSpxXyXxDy=Nx-˙yGGrpGMetSpxXyXxDy=Nx-˙y
38 35 36 37 3bitr4i GGrpGMetSpN-˙=DX×XGGrpGMetSpxXyXxDy=Nx-˙y
39 6 38 bitri GNrmGrpGGrpGMetSpxXyXxDy=Nx-˙y