Description: The property of being a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isngp.n | |
|
isngp.z | |
||
isngp.d | |
||
isngp2.x | |
||
Assertion | isngp3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isngp.n | |
|
2 | isngp.z | |
|
3 | isngp.d | |
|
4 | isngp2.x | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | isngp2 | |
7 | 4 3 | msmet2 | |
8 | 1 4 3 5 | nmf2 | |
9 | 7 8 | sylan2 | |
10 | 4 2 | grpsubf | |
11 | 10 | adantr | |
12 | fco | |
|
13 | 9 11 12 | syl2anc | |
14 | 13 | ffnd | |
15 | 7 | adantl | |
16 | metf | |
|
17 | ffn | |
|
18 | 15 16 17 | 3syl | |
19 | eqfnov2 | |
|
20 | 14 18 19 | syl2anc | |
21 | opelxpi | |
|
22 | fvco3 | |
|
23 | 11 21 22 | syl2an | |
24 | df-ov | |
|
25 | df-ov | |
|
26 | 25 | fveq2i | |
27 | 23 24 26 | 3eqtr4g | |
28 | ovres | |
|
29 | 28 | adantl | |
30 | 27 29 | eqeq12d | |
31 | eqcom | |
|
32 | 30 31 | bitrdi | |
33 | 32 | 2ralbidva | |
34 | 20 33 | bitrd | |
35 | 34 | pm5.32i | |
36 | df-3an | |
|
37 | df-3an | |
|
38 | 35 36 37 | 3bitr4i | |
39 | 6 38 | bitri | |