Metamath Proof Explorer


Theorem isngp

Description: The property of being a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses isngp.n N = norm G
isngp.z - ˙ = - G
isngp.d D = dist G
Assertion isngp G NrmGrp G Grp G MetSp N - ˙ D

Proof

Step Hyp Ref Expression
1 isngp.n N = norm G
2 isngp.z - ˙ = - G
3 isngp.d D = dist G
4 elin G Grp MetSp G Grp G MetSp
5 4 anbi1i G Grp MetSp N - ˙ D G Grp G MetSp N - ˙ D
6 fveq2 g = G norm g = norm G
7 6 1 eqtr4di g = G norm g = N
8 fveq2 g = G - g = - G
9 8 2 eqtr4di g = G - g = - ˙
10 7 9 coeq12d g = G norm g - g = N - ˙
11 fveq2 g = G dist g = dist G
12 11 3 eqtr4di g = G dist g = D
13 10 12 sseq12d g = G norm g - g dist g N - ˙ D
14 df-ngp NrmGrp = g Grp MetSp | norm g - g dist g
15 13 14 elrab2 G NrmGrp G Grp MetSp N - ˙ D
16 df-3an G Grp G MetSp N - ˙ D G Grp G MetSp N - ˙ D
17 5 15 16 3bitr4i G NrmGrp G Grp G MetSp N - ˙ D