| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrginvrcn.x |
|
| 2 |
|
nrginvrcn.u |
|
| 3 |
|
nrginvrcn.i |
|
| 4 |
|
nrginvrcn.j |
|
| 5 |
|
nrgring |
|
| 6 |
|
eqid |
|
| 7 |
2 6
|
unitgrp |
|
| 8 |
2 6
|
unitgrpbas |
|
| 9 |
2 6 3
|
invrfval |
|
| 10 |
8 9
|
grpinvf |
|
| 11 |
5 7 10
|
3syl |
|
| 12 |
|
1rp |
|
| 13 |
12
|
ne0ii |
|
| 14 |
5
|
ad2antrr |
|
| 15 |
1 2
|
unitss |
|
| 16 |
|
simplrl |
|
| 17 |
15 16
|
sselid |
|
| 18 |
|
simpr |
|
| 19 |
15 18
|
sselid |
|
| 20 |
|
eqid |
|
| 21 |
|
eqid |
|
| 22 |
1 20 21
|
ring1eq0 |
|
| 23 |
14 17 19 22
|
syl3anc |
|
| 24 |
|
eqid |
|
| 25 |
|
nrgngp |
|
| 26 |
|
ngpms |
|
| 27 |
|
msxms |
|
| 28 |
25 26 27
|
3syl |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
11
|
adantr |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
15 31
|
sselid |
|
| 33 |
|
eqid |
|
| 34 |
1 33
|
xmseq0 |
|
| 35 |
29 32 32 34
|
syl3anc |
|
| 36 |
24 35
|
mpbiri |
|
| 37 |
|
simplrr |
|
| 38 |
37
|
rpgt0d |
|
| 39 |
36 38
|
eqbrtrd |
|
| 40 |
|
fveq2 |
|
| 41 |
40
|
oveq1d |
|
| 42 |
41
|
breq1d |
|
| 43 |
39 42
|
syl5ibrcom |
|
| 44 |
23 43
|
syld |
|
| 45 |
44
|
imp |
|
| 46 |
45
|
an32s |
|
| 47 |
46
|
a1d |
|
| 48 |
47
|
ralrimiva |
|
| 49 |
48
|
ralrimivw |
|
| 50 |
|
r19.2z |
|
| 51 |
13 49 50
|
sylancr |
|
| 52 |
|
eqid |
|
| 53 |
|
simpll |
|
| 54 |
5
|
ad2antrr |
|
| 55 |
|
simpr |
|
| 56 |
20 21
|
isnzr |
|
| 57 |
54 55 56
|
sylanbrc |
|
| 58 |
|
simplrl |
|
| 59 |
|
simplrr |
|
| 60 |
|
eqid |
|
| 61 |
1 2 3 52 33 53 57 58 59 60
|
nrginvrcnlem |
|
| 62 |
51 61
|
pm2.61dane |
|
| 63 |
16 18
|
ovresd |
|
| 64 |
63
|
breq1d |
|
| 65 |
|
simpl |
|
| 66 |
|
ffvelcdm |
|
| 67 |
11 65 66
|
syl2an |
|
| 68 |
67
|
adantr |
|
| 69 |
68 31
|
ovresd |
|
| 70 |
69
|
breq1d |
|
| 71 |
64 70
|
imbi12d |
|
| 72 |
71
|
ralbidva |
|
| 73 |
72
|
rexbidv |
|
| 74 |
62 73
|
mpbird |
|
| 75 |
74
|
ralrimivva |
|
| 76 |
|
xpss12 |
|
| 77 |
15 15 76
|
mp2an |
|
| 78 |
|
resabs1 |
|
| 79 |
77 78
|
ax-mp |
|
| 80 |
|
eqid |
|
| 81 |
1 80
|
xmsxmet |
|
| 82 |
25 26 27 81
|
4syl |
|
| 83 |
|
xmetres2 |
|
| 84 |
82 15 83
|
sylancl |
|
| 85 |
79 84
|
eqeltrrid |
|
| 86 |
|
eqid |
|
| 87 |
86 86
|
metcn |
|
| 88 |
85 85 87
|
syl2anc |
|
| 89 |
11 75 88
|
mpbir2and |
|
| 90 |
4 1 80
|
mstopn |
|
| 91 |
25 26 90
|
3syl |
|
| 92 |
91
|
oveq1d |
|
| 93 |
79
|
eqcomi |
|
| 94 |
|
eqid |
|
| 95 |
93 94 86
|
metrest |
|
| 96 |
82 15 95
|
sylancl |
|
| 97 |
92 96
|
eqtrd |
|
| 98 |
97 97
|
oveq12d |
|
| 99 |
89 98
|
eleqtrrd |
|