| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrginvrcn.x |
|- X = ( Base ` R ) |
| 2 |
|
nrginvrcn.u |
|- U = ( Unit ` R ) |
| 3 |
|
nrginvrcn.i |
|- I = ( invr ` R ) |
| 4 |
|
nrginvrcn.j |
|- J = ( TopOpen ` R ) |
| 5 |
|
nrgring |
|- ( R e. NrmRing -> R e. Ring ) |
| 6 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
| 7 |
2 6
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 8 |
2 6
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 9 |
2 6 3
|
invrfval |
|- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 10 |
8 9
|
grpinvf |
|- ( ( ( mulGrp ` R ) |`s U ) e. Grp -> I : U --> U ) |
| 11 |
5 7 10
|
3syl |
|- ( R e. NrmRing -> I : U --> U ) |
| 12 |
|
1rp |
|- 1 e. RR+ |
| 13 |
12
|
ne0ii |
|- RR+ =/= (/) |
| 14 |
5
|
ad2antrr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> R e. Ring ) |
| 15 |
1 2
|
unitss |
|- U C_ X |
| 16 |
|
simplrl |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> x e. U ) |
| 17 |
15 16
|
sselid |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> x e. X ) |
| 18 |
|
simpr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> y e. U ) |
| 19 |
15 18
|
sselid |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> y e. X ) |
| 20 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 21 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 22 |
1 20 21
|
ring1eq0 |
|- ( ( R e. Ring /\ x e. X /\ y e. X ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 23 |
14 17 19 22
|
syl3anc |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( 1r ` R ) = ( 0g ` R ) -> x = y ) ) |
| 24 |
|
eqid |
|- ( I ` y ) = ( I ` y ) |
| 25 |
|
nrgngp |
|- ( R e. NrmRing -> R e. NrmGrp ) |
| 26 |
|
ngpms |
|- ( R e. NrmGrp -> R e. MetSp ) |
| 27 |
|
msxms |
|- ( R e. MetSp -> R e. *MetSp ) |
| 28 |
25 26 27
|
3syl |
|- ( R e. NrmRing -> R e. *MetSp ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> R e. *MetSp ) |
| 30 |
11
|
adantr |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> I : U --> U ) |
| 31 |
30
|
ffvelcdmda |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` y ) e. U ) |
| 32 |
15 31
|
sselid |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` y ) e. X ) |
| 33 |
|
eqid |
|- ( dist ` R ) = ( dist ` R ) |
| 34 |
1 33
|
xmseq0 |
|- ( ( R e. *MetSp /\ ( I ` y ) e. X /\ ( I ` y ) e. X ) -> ( ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 <-> ( I ` y ) = ( I ` y ) ) ) |
| 35 |
29 32 32 34
|
syl3anc |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 <-> ( I ` y ) = ( I ` y ) ) ) |
| 36 |
24 35
|
mpbiri |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) = 0 ) |
| 37 |
|
simplrr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> r e. RR+ ) |
| 38 |
37
|
rpgt0d |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> 0 < r ) |
| 39 |
36 38
|
eqbrtrd |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) < r ) |
| 40 |
|
fveq2 |
|- ( x = y -> ( I ` x ) = ( I ` y ) ) |
| 41 |
40
|
oveq1d |
|- ( x = y -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) = ( ( I ` y ) ( dist ` R ) ( I ` y ) ) ) |
| 42 |
41
|
breq1d |
|- ( x = y -> ( ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r <-> ( ( I ` y ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 43 |
39 42
|
syl5ibrcom |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( x = y -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 44 |
23 43
|
syld |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( 1r ` R ) = ( 0g ` R ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 45 |
44
|
imp |
|- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) |
| 46 |
45
|
an32s |
|- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) /\ y e. U ) -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) |
| 47 |
46
|
a1d |
|- ( ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) /\ y e. U ) -> ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 48 |
47
|
ralrimiva |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 49 |
48
|
ralrimivw |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> A. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 50 |
|
r19.2z |
|- ( ( RR+ =/= (/) /\ A. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 51 |
13 49 50
|
sylancr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) = ( 0g ` R ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 52 |
|
eqid |
|- ( norm ` R ) = ( norm ` R ) |
| 53 |
|
simpll |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. NrmRing ) |
| 54 |
5
|
ad2antrr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. Ring ) |
| 55 |
|
simpr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 56 |
20 21
|
isnzr |
|- ( R e. NzRing <-> ( R e. Ring /\ ( 1r ` R ) =/= ( 0g ` R ) ) ) |
| 57 |
54 55 56
|
sylanbrc |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> R e. NzRing ) |
| 58 |
|
simplrl |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> x e. U ) |
| 59 |
|
simplrr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> r e. RR+ ) |
| 60 |
|
eqid |
|- ( if ( 1 <_ ( ( ( norm ` R ) ` x ) x. r ) , 1 , ( ( ( norm ` R ) ` x ) x. r ) ) x. ( ( ( norm ` R ) ` x ) / 2 ) ) = ( if ( 1 <_ ( ( ( norm ` R ) ` x ) x. r ) , 1 , ( ( ( norm ` R ) ` x ) x. r ) ) x. ( ( ( norm ` R ) ` x ) / 2 ) ) |
| 61 |
1 2 3 52 33 53 57 58 59 60
|
nrginvrcnlem |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ ( 1r ` R ) =/= ( 0g ` R ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 62 |
51 61
|
pm2.61dane |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 63 |
16 18
|
ovresd |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( x ( ( dist ` R ) |` ( U X. U ) ) y ) = ( x ( dist ` R ) y ) ) |
| 64 |
63
|
breq1d |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s <-> ( x ( dist ` R ) y ) < s ) ) |
| 65 |
|
simpl |
|- ( ( x e. U /\ r e. RR+ ) -> x e. U ) |
| 66 |
|
ffvelcdm |
|- ( ( I : U --> U /\ x e. U ) -> ( I ` x ) e. U ) |
| 67 |
11 65 66
|
syl2an |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( I ` x ) e. U ) |
| 68 |
67
|
adantr |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( I ` x ) e. U ) |
| 69 |
68 31
|
ovresd |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) = ( ( I ` x ) ( dist ` R ) ( I ` y ) ) ) |
| 70 |
69
|
breq1d |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r <-> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) |
| 71 |
64 70
|
imbi12d |
|- ( ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) /\ y e. U ) -> ( ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 72 |
71
|
ralbidva |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 73 |
72
|
rexbidv |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> ( E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) <-> E. s e. RR+ A. y e. U ( ( x ( dist ` R ) y ) < s -> ( ( I ` x ) ( dist ` R ) ( I ` y ) ) < r ) ) ) |
| 74 |
62 73
|
mpbird |
|- ( ( R e. NrmRing /\ ( x e. U /\ r e. RR+ ) ) -> E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) |
| 75 |
74
|
ralrimivva |
|- ( R e. NrmRing -> A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) |
| 76 |
|
xpss12 |
|- ( ( U C_ X /\ U C_ X ) -> ( U X. U ) C_ ( X X. X ) ) |
| 77 |
15 15 76
|
mp2an |
|- ( U X. U ) C_ ( X X. X ) |
| 78 |
|
resabs1 |
|- ( ( U X. U ) C_ ( X X. X ) -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) = ( ( dist ` R ) |` ( U X. U ) ) ) |
| 79 |
77 78
|
ax-mp |
|- ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) = ( ( dist ` R ) |` ( U X. U ) ) |
| 80 |
|
eqid |
|- ( ( dist ` R ) |` ( X X. X ) ) = ( ( dist ` R ) |` ( X X. X ) ) |
| 81 |
1 80
|
xmsxmet |
|- ( R e. *MetSp -> ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 82 |
25 26 27 81
|
4syl |
|- ( R e. NrmRing -> ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) ) |
| 83 |
|
xmetres2 |
|- ( ( ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) /\ U C_ X ) -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
| 84 |
82 15 83
|
sylancl |
|- ( R e. NrmRing -> ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
| 85 |
79 84
|
eqeltrrid |
|- ( R e. NrmRing -> ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) ) |
| 86 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) |
| 87 |
86 86
|
metcn |
|- ( ( ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) /\ ( ( dist ` R ) |` ( U X. U ) ) e. ( *Met ` U ) ) -> ( I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) <-> ( I : U --> U /\ A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) ) ) |
| 88 |
85 85 87
|
syl2anc |
|- ( R e. NrmRing -> ( I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) <-> ( I : U --> U /\ A. x e. U A. r e. RR+ E. s e. RR+ A. y e. U ( ( x ( ( dist ` R ) |` ( U X. U ) ) y ) < s -> ( ( I ` x ) ( ( dist ` R ) |` ( U X. U ) ) ( I ` y ) ) < r ) ) ) ) |
| 89 |
11 75 88
|
mpbir2and |
|- ( R e. NrmRing -> I e. ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) ) |
| 90 |
4 1 80
|
mstopn |
|- ( R e. MetSp -> J = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) ) |
| 91 |
25 26 90
|
3syl |
|- ( R e. NrmRing -> J = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) ) |
| 92 |
91
|
oveq1d |
|- ( R e. NrmRing -> ( J |`t U ) = ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) ) |
| 93 |
79
|
eqcomi |
|- ( ( dist ` R ) |` ( U X. U ) ) = ( ( ( dist ` R ) |` ( X X. X ) ) |` ( U X. U ) ) |
| 94 |
|
eqid |
|- ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) = ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |
| 95 |
93 94 86
|
metrest |
|- ( ( ( ( dist ` R ) |` ( X X. X ) ) e. ( *Met ` X ) /\ U C_ X ) -> ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 96 |
82 15 95
|
sylancl |
|- ( R e. NrmRing -> ( ( MetOpen ` ( ( dist ` R ) |` ( X X. X ) ) ) |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 97 |
92 96
|
eqtrd |
|- ( R e. NrmRing -> ( J |`t U ) = ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) |
| 98 |
97 97
|
oveq12d |
|- ( R e. NrmRing -> ( ( J |`t U ) Cn ( J |`t U ) ) = ( ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) Cn ( MetOpen ` ( ( dist ` R ) |` ( U X. U ) ) ) ) ) |
| 99 |
89 98
|
eleqtrrd |
|- ( R e. NrmRing -> I e. ( ( J |`t U ) Cn ( J |`t U ) ) ) |