Metamath Proof Explorer


Theorem nm2dif

Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmmtri.m -˙=-G
Assertion nm2dif GNrmGrpAXBXNANBNA-˙B

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmmtri.m -˙=-G
4 1 2 nmcl GNrmGrpAXNA
5 4 3adant3 GNrmGrpAXBXNA
6 1 2 nmcl GNrmGrpBXNB
7 6 3adant2 GNrmGrpAXBXNB
8 5 7 resubcld GNrmGrpAXBXNANB
9 8 recnd GNrmGrpAXBXNANB
10 9 abscld GNrmGrpAXBXNANB
11 simp1 GNrmGrpAXBXGNrmGrp
12 ngpgrp GNrmGrpGGrp
13 1 3 grpsubcl GGrpAXBXA-˙BX
14 12 13 syl3an1 GNrmGrpAXBXA-˙BX
15 1 2 nmcl GNrmGrpA-˙BXNA-˙B
16 11 14 15 syl2anc GNrmGrpAXBXNA-˙B
17 8 leabsd GNrmGrpAXBXNANBNANB
18 1 2 3 nmrtri GNrmGrpAXBXNANBNA-˙B
19 8 10 16 17 18 letrd GNrmGrpAXBXNANBNA-˙B