Metamath Proof Explorer


Theorem nmtri

Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x X=BaseG
nmf.n N=normG
nmtri.p +˙=+G
Assertion nmtri GNrmGrpAXBXNA+˙BNA+NB

Proof

Step Hyp Ref Expression
1 nmf.x X=BaseG
2 nmf.n N=normG
3 nmtri.p +˙=+G
4 ngpgrp GNrmGrpGGrp
5 4 3ad2ant1 GNrmGrpAXBXGGrp
6 simp3 GNrmGrpAXBXBX
7 eqid invgG=invgG
8 1 7 grpinvcl GGrpBXinvgGBX
9 5 6 8 syl2anc GNrmGrpAXBXinvgGBX
10 eqid -G=-G
11 1 2 10 nmmtri GNrmGrpAXinvgGBXNA-GinvgGBNA+NinvgGB
12 9 11 syld3an3 GNrmGrpAXBXNA-GinvgGBNA+NinvgGB
13 simp2 GNrmGrpAXBXAX
14 1 3 10 7 5 13 6 grpsubinv GNrmGrpAXBXA-GinvgGB=A+˙B
15 14 fveq2d GNrmGrpAXBXNA-GinvgGB=NA+˙B
16 1 2 7 nminv GNrmGrpBXNinvgGB=NB
17 16 3adant2 GNrmGrpAXBXNinvgGB=NB
18 17 oveq2d GNrmGrpAXBXNA+NinvgGB=NA+NB
19 12 15 18 3brtr3d GNrmGrpAXBXNA+˙BNA+NB