Metamath Proof Explorer


Theorem nmtri

Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses nmf.x 𝑋 = ( Base ‘ 𝐺 )
nmf.n 𝑁 = ( norm ‘ 𝐺 )
nmtri.p + = ( +g𝐺 )
Assertion nmtri ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 nmf.x 𝑋 = ( Base ‘ 𝐺 )
2 nmf.n 𝑁 = ( norm ‘ 𝐺 )
3 nmtri.p + = ( +g𝐺 )
4 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
5 4 3ad2ant1 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐺 ∈ Grp )
6 simp3 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐵𝑋 )
7 eqid ( invg𝐺 ) = ( invg𝐺 )
8 1 7 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝐵𝑋 ) → ( ( invg𝐺 ) ‘ 𝐵 ) ∈ 𝑋 )
9 5 6 8 syl2anc ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( invg𝐺 ) ‘ 𝐵 ) ∈ 𝑋 )
10 eqid ( -g𝐺 ) = ( -g𝐺 )
11 1 2 10 nmmtri ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ∧ ( ( invg𝐺 ) ‘ 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) ( ( invg𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( ( invg𝐺 ) ‘ 𝐵 ) ) ) )
12 9 11 syld3an3 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) ( ( invg𝐺 ) ‘ 𝐵 ) ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( ( invg𝐺 ) ‘ 𝐵 ) ) ) )
13 simp2 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐴𝑋 )
14 1 3 10 7 5 13 6 grpsubinv ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( -g𝐺 ) ( ( invg𝐺 ) ‘ 𝐵 ) ) = ( 𝐴 + 𝐵 ) )
15 14 fveq2d ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( -g𝐺 ) ( ( invg𝐺 ) ‘ 𝐵 ) ) ) = ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) )
16 1 2 7 nminv ( ( 𝐺 ∈ NrmGrp ∧ 𝐵𝑋 ) → ( 𝑁 ‘ ( ( invg𝐺 ) ‘ 𝐵 ) ) = ( 𝑁𝐵 ) )
17 16 3adant2 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( ( invg𝐺 ) ‘ 𝐵 ) ) = ( 𝑁𝐵 ) )
18 17 oveq2d ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) + ( 𝑁 ‘ ( ( invg𝐺 ) ‘ 𝐵 ) ) ) = ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) )
19 12 15 18 3brtr3d ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ≤ ( ( 𝑁𝐴 ) + ( 𝑁𝐵 ) ) )