| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmf.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
nmf.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
| 3 |
|
nminv.i |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 4 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 6 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 7 |
1 6
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 9 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 11 |
2 1 9 10
|
ngpdsr |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 12 |
8 11
|
mpd3an3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 13 |
2 1 6 10
|
nmval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 15 |
1 9 3 6
|
grpinvval2 |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 16 |
4 15
|
sylan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐼 ‘ 𝐴 ) = ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑁 ‘ ( ( 0g ‘ 𝐺 ) ( -g ‘ 𝐺 ) 𝐴 ) ) ) |
| 18 |
12 14 17
|
3eqtr4rd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐼 ‘ 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |