Step |
Hyp |
Ref |
Expression |
1 |
|
nmf.x |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
nmf.n |
⊢ 𝑁 = ( norm ‘ 𝐺 ) |
3 |
|
nmmtri.m |
⊢ − = ( -g ‘ 𝐺 ) |
4 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
5 |
2 1 3 4
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
6 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ MetSp ) |
8 |
|
simp2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
9 |
|
simp3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
10 |
|
ngpgrp |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
12 |
1 11
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
13 |
10 12
|
syl |
⊢ ( 𝐺 ∈ NrmGrp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
15 |
1 4
|
mstri3 |
⊢ ( ( 𝐺 ∈ MetSp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ≤ ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) + ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
16 |
7 8 9 14 15
|
syl13anc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ≤ ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) + ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
17 |
2 1 11 4
|
nmval |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
19 |
2 1 11 4
|
nmval |
⊢ ( 𝐵 ∈ 𝑋 → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐵 ) = ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝐴 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) + ( 𝐵 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
22 |
16 21
|
breqtrrd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( dist ‘ 𝐺 ) 𝐵 ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |
23 |
5 22
|
eqbrtrrd |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐵 ) ) ) |