Metamath Proof Explorer


Theorem nm2dif

Description: Inequality for the difference of norms. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nmf.x 𝑋 = ( Base ‘ 𝐺 )
nmf.n 𝑁 = ( norm ‘ 𝐺 )
nmmtri.m = ( -g𝐺 )
Assertion nm2dif ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 nmf.x 𝑋 = ( Base ‘ 𝐺 )
2 nmf.n 𝑁 = ( norm ‘ 𝐺 )
3 nmmtri.m = ( -g𝐺 )
4 1 2 nmcl ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ) → ( 𝑁𝐴 ) ∈ ℝ )
5 4 3adant3 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁𝐴 ) ∈ ℝ )
6 1 2 nmcl ( ( 𝐺 ∈ NrmGrp ∧ 𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ ℝ )
7 6 3adant2 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁𝐵 ) ∈ ℝ )
8 5 7 resubcld ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ∈ ℝ )
9 8 recnd ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ∈ ℂ )
10 9 abscld ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( abs ‘ ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ) ∈ ℝ )
11 simp1 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐺 ∈ NrmGrp )
12 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
13 1 3 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐵 ) ∈ 𝑋 )
14 12 13 syl3an1 ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐵 ) ∈ 𝑋 )
15 1 2 nmcl ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐴 𝐵 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐵 ) ) ∈ ℝ )
16 11 14 15 syl2anc ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝑁 ‘ ( 𝐴 𝐵 ) ) ∈ ℝ )
17 8 leabsd ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ≤ ( abs ‘ ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ) )
18 1 2 3 nmrtri ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( abs ‘ ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝐵 ) ) )
19 8 10 16 17 18 letrd ( ( 𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋 ) → ( ( 𝑁𝐴 ) − ( 𝑁𝐵 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝐵 ) ) )