Metamath Proof Explorer


Theorem nrgring

Description: A normed ring is a ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion nrgring ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring )

Proof

Step Hyp Ref Expression
1 eqid ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 )
2 eqid ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 )
3 1 2 nrgabv ( 𝑅 ∈ NrmRing → ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) )
4 2 abvrcl ( ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) → 𝑅 ∈ Ring )
5 3 4 syl ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring )