Metamath Proof Explorer
Description: The norm of a normed ring is an absolute value. (Contributed by Mario
Carneiro, 4-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
isnrg.1 |
⊢ 𝑁 = ( norm ‘ 𝑅 ) |
|
|
isnrg.2 |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
|
Assertion |
nrgabv |
⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isnrg.1 |
⊢ 𝑁 = ( norm ‘ 𝑅 ) |
| 2 |
|
isnrg.2 |
⊢ 𝐴 = ( AbsVal ‘ 𝑅 ) |
| 3 |
1 2
|
isnrg |
⊢ ( 𝑅 ∈ NrmRing ↔ ( 𝑅 ∈ NrmGrp ∧ 𝑁 ∈ 𝐴 ) ) |
| 4 |
3
|
simprbi |
⊢ ( 𝑅 ∈ NrmRing → 𝑁 ∈ 𝐴 ) |