Description: A normed ring is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgtgp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
| 2 | nrgring | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) | |
| 3 | ringabl | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Abel ) |
| 5 | ngptgp | ⊢ ( ( 𝑅 ∈ NrmGrp ∧ 𝑅 ∈ Abel ) → 𝑅 ∈ TopGrp ) | |
| 6 | 1 4 5 | syl2anc | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp ) |