| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topnpropd.1 |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 2 |
|
topnpropd.2 |
⊢ ( 𝜑 → ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐿 ) ) |
| 3 |
2 1
|
oveq12d |
⊢ ( 𝜑 → ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( ( TopSet ‘ 𝐿 ) ↾t ( Base ‘ 𝐿 ) ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 5 |
|
eqid |
⊢ ( TopSet ‘ 𝐾 ) = ( TopSet ‘ 𝐾 ) |
| 6 |
4 5
|
topnval |
⊢ ( ( TopSet ‘ 𝐾 ) ↾t ( Base ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) |
| 8 |
|
eqid |
⊢ ( TopSet ‘ 𝐿 ) = ( TopSet ‘ 𝐿 ) |
| 9 |
7 8
|
topnval |
⊢ ( ( TopSet ‘ 𝐿 ) ↾t ( Base ‘ 𝐿 ) ) = ( TopOpen ‘ 𝐿 ) |
| 10 |
3 6 9
|
3eqtr3g |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐿 ) ) |