Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
4 |
|
qqhrhm.1 |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
5 |
4
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
6 |
|
qex |
⊢ ℚ ∈ V |
7 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
8 |
4 7
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
9 |
6 8
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
11 |
4
|
qdrng |
⊢ 𝑄 ∈ DivRing |
12 |
|
drnggrp |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ Grp ) |
13 |
11 12
|
mp1i |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑄 ∈ Grp ) |
14 |
|
drnggrp |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Grp ) |
15 |
14
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ Grp ) |
16 |
1 2 3
|
qqhf |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
17 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑅 ∈ Ring ) |
19 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ Ring ) |
20 |
3
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
21 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
22 |
21 1
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
23 |
19 20 22
|
3syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 : ℤ ⟶ 𝐵 ) |
25 |
|
qnumcl |
⊢ ( 𝑥 ∈ ℚ → ( numer ‘ 𝑥 ) ∈ ℤ ) |
26 |
25
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑥 ) ∈ ℤ ) |
27 |
|
qdencl |
⊢ ( 𝑦 ∈ ℚ → ( denom ‘ 𝑦 ) ∈ ℕ ) |
28 |
27
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℕ ) |
29 |
28
|
nnzd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℤ ) |
30 |
26 29
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ) |
31 |
24 30
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ 𝐵 ) |
32 |
|
qnumcl |
⊢ ( 𝑦 ∈ ℚ → ( numer ‘ 𝑦 ) ∈ ℤ ) |
33 |
32
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑦 ) ∈ ℤ ) |
34 |
|
qdencl |
⊢ ( 𝑥 ∈ ℚ → ( denom ‘ 𝑥 ) ∈ ℕ ) |
35 |
34
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℕ ) |
36 |
35
|
nnzd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℤ ) |
37 |
33 36
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) |
38 |
24 37
|
ffvelrnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
39 |
18 20
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
40 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
41 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
42 |
21 40 41
|
rhmmul |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
43 |
39 36 29 42
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
44 |
|
simpl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ) |
45 |
35
|
nnne0d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ≠ 0 ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
47 |
1 3 46
|
elzrhunit |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
48 |
44 36 45 47
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
49 |
28
|
nnne0d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ≠ 0 ) |
50 |
1 3 46
|
elzrhunit |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ≠ 0 ) ) → ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
51 |
44 29 49 50
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
52 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
53 |
52 41
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
54 |
18 48 51 53
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
55 |
43 54
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
56 |
1 52 10 2
|
dvrdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
57 |
18 31 38 55 56
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
58 |
|
qeqnumdivden |
⊢ ( 𝑥 ∈ ℚ → 𝑥 = ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) |
59 |
58
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑥 = ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) |
60 |
|
qeqnumdivden |
⊢ ( 𝑦 ∈ ℚ → 𝑦 = ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) |
61 |
60
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑦 = ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) |
62 |
59 61
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 + 𝑦 ) = ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) + ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
63 |
26
|
zcnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑥 ) ∈ ℂ ) |
64 |
36
|
zcnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℂ ) |
65 |
33
|
zcnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑦 ) ∈ ℂ ) |
66 |
29
|
zcnd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℂ ) |
67 |
63 64 65 66 45 49
|
divadddivd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) + ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
68 |
62 67
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
69 |
68
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
70 |
30 37
|
zaddcld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ ℤ ) |
71 |
36 29
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ) |
72 |
64 66 45 49
|
mulne0d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ≠ 0 ) |
73 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
74 |
44 70 71 72 73
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
75 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
76 |
39 75
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
77 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
78 |
21 77 10
|
ghmlin |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) → ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
79 |
78
|
oveq1d |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) → ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
80 |
76 30 37 79
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
81 |
69 74 80
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
82 |
58
|
fveq2d |
⊢ ( 𝑥 ∈ ℚ → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) ) |
83 |
82
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) ) |
84 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( numer ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ) |
85 |
44 26 36 45 84
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ) |
86 |
52 21 2 40
|
rhmdvd |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ) ∧ ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
87 |
39 26 36 29 48 51 86
|
syl132anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
88 |
83 85 87
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
89 |
60
|
fveq2d |
⊢ ( 𝑦 ∈ ℚ → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
90 |
89
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
91 |
52 21 2 40
|
rhmdvd |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( ( numer ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ) ∧ ( ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
92 |
39 33 29 36 51 48 91
|
syl132anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
93 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( numer ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
94 |
44 33 29 49 93
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
95 |
64 66
|
mulcomd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) = ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) |
96 |
95
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) |
97 |
96
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
98 |
92 94 97
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
99 |
90 98
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
100 |
88 99
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
101 |
57 81 100
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
102 |
5 1 9 10 13 15 16 101
|
isghmd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |