| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
|
qqhrhm.1 |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 5 |
4
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 6 |
4
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 7 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 8 |
|
qex |
⊢ ℚ ∈ V |
| 9 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 10 |
4 9
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
| 11 |
8 10
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 13 |
4
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 14 |
|
drngring |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ Ring ) |
| 15 |
13 14
|
mp1i |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑄 ∈ Ring ) |
| 16 |
|
isfld |
⊢ ( 𝑅 ∈ Field ↔ ( 𝑅 ∈ DivRing ∧ 𝑅 ∈ CRing ) ) |
| 17 |
16
|
simplbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ DivRing ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ DivRing ) |
| 19 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 20 |
18 19
|
syl |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ Ring ) |
| 21 |
1 2 3
|
qqh1 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 22 |
17 21
|
sylan |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 23 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 24 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 25 |
16
|
simprbi |
⊢ ( 𝑅 ∈ Field → 𝑅 ∈ CRing ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑅 ∈ CRing ) |
| 27 |
3
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 28 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 29 |
28 1
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 30 |
20 27 29
|
3syl |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 31 |
30
|
adantr |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 32 |
|
qnumcl |
⊢ ( 𝑥 ∈ ℚ → ( numer ‘ 𝑥 ) ∈ ℤ ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑥 ) ∈ ℤ ) |
| 34 |
31 33
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ∈ 𝐵 ) |
| 35 |
17
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑅 ∈ DivRing ) |
| 36 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( chr ‘ 𝑅 ) = 0 ) |
| 37 |
35 36
|
jca |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ) |
| 38 |
|
qdencl |
⊢ ( 𝑥 ∈ ℚ → ( denom ‘ 𝑥 ) ∈ ℕ ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℕ ) |
| 40 |
39
|
nnzd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℤ ) |
| 41 |
39
|
nnne0d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ≠ 0 ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 43 |
1 3 42
|
elzrhunit |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ≠ 0 ) ) → ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 44 |
37 40 41 43
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 45 |
|
qnumcl |
⊢ ( 𝑦 ∈ ℚ → ( numer ‘ 𝑦 ) ∈ ℤ ) |
| 46 |
45
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑦 ) ∈ ℤ ) |
| 47 |
31 46
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ∈ 𝐵 ) |
| 48 |
|
qdencl |
⊢ ( 𝑦 ∈ ℚ → ( denom ‘ 𝑦 ) ∈ ℕ ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℕ ) |
| 50 |
49
|
nnzd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℤ ) |
| 51 |
49
|
nnne0d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ≠ 0 ) |
| 52 |
1 3 42
|
elzrhunit |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ≠ 0 ) ) → ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 53 |
37 50 51 52
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 54 |
1 23 24 2 12 26 34 44 47 53
|
rdivmuldivd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ) / ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) ) |
| 55 |
|
qeqnumdivden |
⊢ ( 𝑥 ∈ ℚ → 𝑥 = ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑥 ∈ ℚ → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) ) |
| 58 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( numer ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ) |
| 59 |
37 33 40 41 58
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ) |
| 60 |
57 59
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ) |
| 61 |
|
qeqnumdivden |
⊢ ( 𝑦 ∈ ℚ → 𝑦 = ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝑦 ∈ ℚ → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
| 63 |
62
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
| 64 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( numer ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
| 65 |
37 46 50 51 64
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
| 66 |
63 65
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
| 67 |
60 66
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) ) |
| 68 |
55
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑥 = ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) ) |
| 69 |
61
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑦 = ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) |
| 70 |
68 69
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 · 𝑦 ) = ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) · ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
| 71 |
33
|
zcnd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑥 ) ∈ ℂ ) |
| 72 |
40
|
zcnd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑥 ) ∈ ℂ ) |
| 73 |
46
|
zcnd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( numer ‘ 𝑦 ) ∈ ℂ ) |
| 74 |
50
|
zcnd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( denom ‘ 𝑦 ) ∈ ℂ ) |
| 75 |
71 72 73 74 41 51
|
divmuldivd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) · ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
| 76 |
70 75
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 · 𝑦 ) = ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
| 77 |
76
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 78 |
33 46
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ∈ ℤ ) |
| 79 |
40 50
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ) |
| 80 |
72 74 41 51
|
mulne0d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ≠ 0 ) |
| 81 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 82 |
37 78 79 80 81
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 83 |
35 19
|
syl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝑅 ∈ Ring ) |
| 84 |
83 27
|
syl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 85 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 86 |
28 85 12
|
rhmmul |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( numer ‘ 𝑥 ) ∈ ℤ ∧ ( numer ‘ 𝑦 ) ∈ ℤ ) → ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ) ) |
| 87 |
84 33 46 86
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ) ) |
| 88 |
28 85 12
|
rhmmul |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
| 89 |
84 40 50 88
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) |
| 90 |
87 89
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( numer ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ) / ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) ) |
| 91 |
77 82 90
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) ) / ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ) ) |
| 92 |
54 67 91
|
3eqtr4rd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 · 𝑦 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 93 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 94 |
4 93
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
| 95 |
8 94
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
| 96 |
1 2 3
|
qqhf |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
| 97 |
17 96
|
sylan |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |
| 98 |
33 50
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ) |
| 99 |
31 98
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ 𝐵 ) |
| 100 |
46 40
|
zmulcld |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) |
| 101 |
31 100
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ 𝐵 ) |
| 102 |
23 12
|
unitmulcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 103 |
83 44 53 102
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ( .r ‘ 𝑅 ) ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 104 |
89 103
|
eqeltrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 105 |
1 23 24 2
|
dvrdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
| 106 |
83 99 101 104 105
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
| 107 |
68 69
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 + 𝑦 ) = ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) + ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) ) |
| 108 |
71 72 73 74 41 51
|
divadddivd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( numer ‘ 𝑥 ) / ( denom ‘ 𝑥 ) ) + ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
| 109 |
107 108
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝑥 + 𝑦 ) = ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) |
| 110 |
109
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 111 |
98 100
|
zaddcld |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ ℤ ) |
| 112 |
1 2 3
|
qqhvq |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ≠ 0 ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 113 |
37 111 79 80 112
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 114 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 115 |
84 114
|
syl |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 116 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 117 |
28 116 24
|
ghmlin |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) → ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
| 118 |
117
|
oveq1d |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ∈ ℤ ∧ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ∈ ℤ ) → ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 119 |
115 98 100 118
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) + ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 120 |
110 113 119
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 121 |
23 28 2 85
|
rhmdvd |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( ( numer ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ) ∧ ( ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 122 |
84 33 40 50 44 53 121
|
syl132anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑥 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 123 |
57 59 122
|
3eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 124 |
23 28 2 85
|
rhmdvd |
⊢ ( ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) ∧ ( ( numer ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑦 ) ∈ ℤ ∧ ( denom ‘ 𝑥 ) ∈ ℤ ) ∧ ( ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝐿 ‘ ( denom ‘ 𝑥 ) ) ∈ ( Unit ‘ 𝑅 ) ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
| 125 |
84 46 50 40 53 44 124
|
syl132anc |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑦 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
| 126 |
72 74
|
mulcomd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) = ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) |
| 127 |
126
|
fveq2d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) = ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) |
| 128 |
127
|
oveq2d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) ) ) |
| 129 |
125 65 128
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( ( numer ‘ 𝑦 ) / ( denom ‘ 𝑦 ) ) ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 130 |
63 129
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) = ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) |
| 131 |
123 130
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) = ( ( ( 𝐿 ‘ ( ( numer ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ( +g ‘ 𝑅 ) ( ( 𝐿 ‘ ( ( numer ‘ 𝑦 ) · ( denom ‘ 𝑥 ) ) ) / ( 𝐿 ‘ ( ( denom ‘ 𝑥 ) · ( denom ‘ 𝑦 ) ) ) ) ) ) |
| 132 |
106 120 131
|
3eqtr4d |
⊢ ( ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) ) → ( ( ℚHom ‘ 𝑅 ) ‘ ( 𝑥 + 𝑦 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑥 ) ( +g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑦 ) ) ) |
| 133 |
5 6 7 11 12 15 20 22 92 1 95 24 97 132
|
isrhmd |
⊢ ( ( 𝑅 ∈ Field ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 RingHom 𝑅 ) ) |