Metamath Proof Explorer


Theorem mulne0d

Description: The product of two nonzero numbers is nonzero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses msq0d.1 ( 𝜑𝐴 ∈ ℂ )
mul0ord.2 ( 𝜑𝐵 ∈ ℂ )
mulne0d.3 ( 𝜑𝐴 ≠ 0 )
mulne0d.4 ( 𝜑𝐵 ≠ 0 )
Assertion mulne0d ( 𝜑 → ( 𝐴 · 𝐵 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 msq0d.1 ( 𝜑𝐴 ∈ ℂ )
2 mul0ord.2 ( 𝜑𝐵 ∈ ℂ )
3 mulne0d.3 ( 𝜑𝐴 ≠ 0 )
4 mulne0d.4 ( 𝜑𝐵 ≠ 0 )
5 1 2 mulne0bd ( 𝜑 → ( ( 𝐴 ≠ 0 ∧ 𝐵 ≠ 0 ) ↔ ( 𝐴 · 𝐵 ) ≠ 0 ) )
6 3 4 5 mpbi2and ( 𝜑 → ( 𝐴 · 𝐵 ) ≠ 0 )