Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
3 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
5 |
2 4
|
subeq0ad |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ↔ ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝐶 ) ) ) |
6 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
7 |
|
subcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
8 |
7
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
9 |
6 8
|
mul0ord |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 − 𝐶 ) ) = 0 ↔ ( 𝐴 = 0 ∨ ( 𝐵 − 𝐶 ) = 0 ) ) ) |
10 |
|
subdi |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) ) |
11 |
10
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · ( 𝐵 − 𝐶 ) ) = 0 ↔ ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ) ) |
12 |
|
subeq0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) = 0 ↔ 𝐵 = 𝐶 ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) = 0 ↔ 𝐵 = 𝐶 ) ) |
14 |
13
|
orbi2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 = 0 ∨ ( 𝐵 − 𝐶 ) = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |
15 |
9 11 14
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) − ( 𝐴 · 𝐶 ) ) = 0 ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |
16 |
5 15
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) = ( 𝐴 · 𝐶 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 𝐶 ) ) ) |