| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ·  𝐵 )  ∈  ℂ ) | 
						
							| 3 |  | mulcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ·  𝐶 )  ∈  ℂ ) | 
						
							| 4 | 3 | 3adant2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ·  𝐶 )  ∈  ℂ ) | 
						
							| 5 | 2 4 | subeq0ad | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  ·  𝐵 )  −  ( 𝐴  ·  𝐶 ) )  =  0  ↔  ( 𝐴  ·  𝐵 )  =  ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 7 |  | subcl | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  −  𝐶 )  ∈  ℂ ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐵  −  𝐶 )  ∈  ℂ ) | 
						
							| 9 | 6 8 | mul0ord | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  ( 𝐵  −  𝐶 ) )  =  0  ↔  ( 𝐴  =  0  ∨  ( 𝐵  −  𝐶 )  =  0 ) ) ) | 
						
							| 10 |  | subdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴  ·  ( 𝐵  −  𝐶 ) )  =  ( ( 𝐴  ·  𝐵 )  −  ( 𝐴  ·  𝐶 ) ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  ( 𝐵  −  𝐶 ) )  =  0  ↔  ( ( 𝐴  ·  𝐵 )  −  ( 𝐴  ·  𝐶 ) )  =  0 ) ) | 
						
							| 12 |  | subeq0 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐵  −  𝐶 )  =  0  ↔  𝐵  =  𝐶 ) ) | 
						
							| 13 | 12 | 3adant1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐵  −  𝐶 )  =  0  ↔  𝐵  =  𝐶 ) ) | 
						
							| 14 | 13 | orbi2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  =  0  ∨  ( 𝐵  −  𝐶 )  =  0 )  ↔  ( 𝐴  =  0  ∨  𝐵  =  𝐶 ) ) ) | 
						
							| 15 | 9 11 14 | 3bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( ( 𝐴  ·  𝐵 )  −  ( 𝐴  ·  𝐶 ) )  =  0  ↔  ( 𝐴  =  0  ∨  𝐵  =  𝐶 ) ) ) | 
						
							| 16 | 5 15 | bitr3d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 𝐴  ·  𝐵 )  =  ( 𝐴  ·  𝐶 )  ↔  ( 𝐴  =  0  ∨  𝐵  =  𝐶 ) ) ) |