| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulcl |  |-  ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) | 
						
							| 3 |  | mulcl |  |-  ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) | 
						
							| 5 | 2 4 | subeq0ad |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A x. B ) = ( A x. C ) ) ) | 
						
							| 6 |  | simp1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) | 
						
							| 7 |  | subcl |  |-  ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) | 
						
							| 9 | 6 8 | mul0ord |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( A = 0 \/ ( B - C ) = 0 ) ) ) | 
						
							| 10 |  | subdi |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) ) | 
						
							| 11 | 10 | eqeq1d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( ( A x. B ) - ( A x. C ) ) = 0 ) ) | 
						
							| 12 |  | subeq0 |  |-  ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) | 
						
							| 14 | 13 | orbi2d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A = 0 \/ ( B - C ) = 0 ) <-> ( A = 0 \/ B = C ) ) ) | 
						
							| 15 | 9 11 14 | 3bitr3d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A = 0 \/ B = C ) ) ) | 
						
							| 16 | 5 15 | bitr3d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) = ( A x. C ) <-> ( A = 0 \/ B = C ) ) ) |