Step |
Hyp |
Ref |
Expression |
1 |
|
mulcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
2 |
1
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. B ) e. CC ) |
3 |
|
mulcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
4 |
3
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) e. CC ) |
5 |
2 4
|
subeq0ad |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A x. B ) = ( A x. C ) ) ) |
6 |
|
simp1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
7 |
|
subcl |
|- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
8 |
7
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
9 |
6 8
|
mul0ord |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( A = 0 \/ ( B - C ) = 0 ) ) ) |
10 |
|
subdi |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) ) |
11 |
10
|
eqeq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. ( B - C ) ) = 0 <-> ( ( A x. B ) - ( A x. C ) ) = 0 ) ) |
12 |
|
subeq0 |
|- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) |
13 |
12
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) = 0 <-> B = C ) ) |
14 |
13
|
orbi2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A = 0 \/ ( B - C ) = 0 ) <-> ( A = 0 \/ B = C ) ) ) |
15 |
9 11 14
|
3bitr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A x. B ) - ( A x. C ) ) = 0 <-> ( A = 0 \/ B = C ) ) ) |
16 |
5 15
|
bitr3d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. B ) = ( A x. C ) <-> ( A = 0 \/ B = C ) ) ) |