Step |
Hyp |
Ref |
Expression |
1 |
|
mulcom |
|- ( ( A e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
2 |
1
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. C ) = ( C x. A ) ) |
3 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
4 |
3
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
5 |
2 4
|
eqeq12d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( C x. A ) = ( C x. B ) ) ) |
6 |
|
mulcan1g |
|- ( ( C e. CC /\ A e. CC /\ B e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) |
7 |
6
|
3coml |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( C = 0 \/ A = B ) ) ) |
8 |
|
orcom |
|- ( ( C = 0 \/ A = B ) <-> ( A = B \/ C = 0 ) ) |
9 |
7 8
|
bitrdi |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( C x. A ) = ( C x. B ) <-> ( A = B \/ C = 0 ) ) ) |
10 |
5 9
|
bitrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A x. C ) = ( B x. C ) <-> ( A = B \/ C = 0 ) ) ) |