Metamath Proof Explorer


Theorem mulcan1g

Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)

Ref Expression
Assertion mulcan1g ABCAB=ACA=0B=C

Proof

Step Hyp Ref Expression
1 mulcl ABAB
2 1 3adant3 ABCAB
3 mulcl ACAC
4 3 3adant2 ABCAC
5 2 4 subeq0ad ABCABAC=0AB=AC
6 simp1 ABCA
7 subcl BCBC
8 7 3adant1 ABCBC
9 6 8 mul0ord ABCABC=0A=0BC=0
10 subdi ABCABC=ABAC
11 10 eqeq1d ABCABC=0ABAC=0
12 subeq0 BCBC=0B=C
13 12 3adant1 ABCBC=0B=C
14 13 orbi2d ABCA=0BC=0A=0B=C
15 9 11 14 3bitr3d ABCABAC=0A=0B=C
16 5 15 bitr3d ABCAB=ACA=0B=C