Metamath Proof Explorer


Theorem mulcan1g

Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)

Ref Expression
Assertion mulcan1g A B C A B = A C A = 0 B = C

Proof

Step Hyp Ref Expression
1 mulcl A B A B
2 1 3adant3 A B C A B
3 mulcl A C A C
4 3 3adant2 A B C A C
5 2 4 subeq0ad A B C A B A C = 0 A B = A C
6 simp1 A B C A
7 subcl B C B C
8 7 3adant1 A B C B C
9 6 8 mul0ord A B C A B C = 0 A = 0 B C = 0
10 subdi A B C A B C = A B A C
11 10 eqeq1d A B C A B C = 0 A B A C = 0
12 subeq0 B C B C = 0 B = C
13 12 3adant1 A B C B C = 0 B = C
14 13 orbi2d A B C A = 0 B C = 0 A = 0 B = C
15 9 11 14 3bitr3d A B C A B A C = 0 A = 0 B = C
16 5 15 bitr3d A B C A B = A C A = 0 B = C