Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
4 |
|
qqhrhm.1 |
|- Q = ( CCfld |`s QQ ) |
5 |
4
|
qrngbas |
|- QQ = ( Base ` Q ) |
6 |
4
|
qrng1 |
|- 1 = ( 1r ` Q ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
qex |
|- QQ e. _V |
9 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
10 |
4 9
|
ressmulr |
|- ( QQ e. _V -> x. = ( .r ` Q ) ) |
11 |
8 10
|
ax-mp |
|- x. = ( .r ` Q ) |
12 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
13 |
4
|
qdrng |
|- Q e. DivRing |
14 |
|
drngring |
|- ( Q e. DivRing -> Q e. Ring ) |
15 |
13 14
|
mp1i |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> Q e. Ring ) |
16 |
|
isfld |
|- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
17 |
16
|
simplbi |
|- ( R e. Field -> R e. DivRing ) |
18 |
17
|
adantr |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> R e. DivRing ) |
19 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
20 |
18 19
|
syl |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> R e. Ring ) |
21 |
1 2 3
|
qqh1 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 1 ) = ( 1r ` R ) ) |
22 |
17 21
|
sylan |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 1 ) = ( 1r ` R ) ) |
23 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
24 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
25 |
16
|
simprbi |
|- ( R e. Field -> R e. CRing ) |
26 |
25
|
ad2antrr |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> R e. CRing ) |
27 |
3
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
28 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
29 |
28 1
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> B ) |
30 |
20 27 29
|
3syl |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> L : ZZ --> B ) |
31 |
30
|
adantr |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> L : ZZ --> B ) |
32 |
|
qnumcl |
|- ( x e. QQ -> ( numer ` x ) e. ZZ ) |
33 |
32
|
ad2antrl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( numer ` x ) e. ZZ ) |
34 |
31 33
|
ffvelrnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( numer ` x ) ) e. B ) |
35 |
17
|
ad2antrr |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> R e. DivRing ) |
36 |
|
simplr |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( chr ` R ) = 0 ) |
37 |
35 36
|
jca |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( R e. DivRing /\ ( chr ` R ) = 0 ) ) |
38 |
|
qdencl |
|- ( x e. QQ -> ( denom ` x ) e. NN ) |
39 |
38
|
ad2antrl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` x ) e. NN ) |
40 |
39
|
nnzd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` x ) e. ZZ ) |
41 |
39
|
nnne0d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` x ) =/= 0 ) |
42 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
43 |
1 3 42
|
elzrhunit |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( denom ` x ) e. ZZ /\ ( denom ` x ) =/= 0 ) ) -> ( L ` ( denom ` x ) ) e. ( Unit ` R ) ) |
44 |
37 40 41 43
|
syl12anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( denom ` x ) ) e. ( Unit ` R ) ) |
45 |
|
qnumcl |
|- ( y e. QQ -> ( numer ` y ) e. ZZ ) |
46 |
45
|
ad2antll |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( numer ` y ) e. ZZ ) |
47 |
31 46
|
ffvelrnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( numer ` y ) ) e. B ) |
48 |
|
qdencl |
|- ( y e. QQ -> ( denom ` y ) e. NN ) |
49 |
48
|
ad2antll |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` y ) e. NN ) |
50 |
49
|
nnzd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` y ) e. ZZ ) |
51 |
49
|
nnne0d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` y ) =/= 0 ) |
52 |
1 3 42
|
elzrhunit |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( denom ` y ) e. ZZ /\ ( denom ` y ) =/= 0 ) ) -> ( L ` ( denom ` y ) ) e. ( Unit ` R ) ) |
53 |
37 50 51 52
|
syl12anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( denom ` y ) ) e. ( Unit ` R ) ) |
54 |
1 23 24 2 12 26 34 44 47 53
|
rdivmuldivd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) ( .r ` R ) ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) ) = ( ( ( L ` ( numer ` x ) ) ( .r ` R ) ( L ` ( numer ` y ) ) ) ./ ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) ) ) |
55 |
|
qeqnumdivden |
|- ( x e. QQ -> x = ( ( numer ` x ) / ( denom ` x ) ) ) |
56 |
55
|
fveq2d |
|- ( x e. QQ -> ( ( QQHom ` R ) ` x ) = ( ( QQHom ` R ) ` ( ( numer ` x ) / ( denom ` x ) ) ) ) |
57 |
56
|
ad2antrl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` x ) = ( ( QQHom ` R ) ` ( ( numer ` x ) / ( denom ` x ) ) ) ) |
58 |
1 2 3
|
qqhvq |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( numer ` x ) e. ZZ /\ ( denom ` x ) e. ZZ /\ ( denom ` x ) =/= 0 ) ) -> ( ( QQHom ` R ) ` ( ( numer ` x ) / ( denom ` x ) ) ) = ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) ) |
59 |
37 33 40 41 58
|
syl13anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( ( numer ` x ) / ( denom ` x ) ) ) = ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) ) |
60 |
57 59
|
eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` x ) = ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) ) |
61 |
|
qeqnumdivden |
|- ( y e. QQ -> y = ( ( numer ` y ) / ( denom ` y ) ) ) |
62 |
61
|
fveq2d |
|- ( y e. QQ -> ( ( QQHom ` R ) ` y ) = ( ( QQHom ` R ) ` ( ( numer ` y ) / ( denom ` y ) ) ) ) |
63 |
62
|
ad2antll |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` y ) = ( ( QQHom ` R ) ` ( ( numer ` y ) / ( denom ` y ) ) ) ) |
64 |
1 2 3
|
qqhvq |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( numer ` y ) e. ZZ /\ ( denom ` y ) e. ZZ /\ ( denom ` y ) =/= 0 ) ) -> ( ( QQHom ` R ) ` ( ( numer ` y ) / ( denom ` y ) ) ) = ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) ) |
65 |
37 46 50 51 64
|
syl13anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( ( numer ` y ) / ( denom ` y ) ) ) = ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) ) |
66 |
63 65
|
eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` y ) = ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) ) |
67 |
60 66
|
oveq12d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( QQHom ` R ) ` x ) ( .r ` R ) ( ( QQHom ` R ) ` y ) ) = ( ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) ( .r ` R ) ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) ) ) |
68 |
55
|
ad2antrl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> x = ( ( numer ` x ) / ( denom ` x ) ) ) |
69 |
61
|
ad2antll |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> y = ( ( numer ` y ) / ( denom ` y ) ) ) |
70 |
68 69
|
oveq12d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( x x. y ) = ( ( ( numer ` x ) / ( denom ` x ) ) x. ( ( numer ` y ) / ( denom ` y ) ) ) ) |
71 |
33
|
zcnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( numer ` x ) e. CC ) |
72 |
40
|
zcnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` x ) e. CC ) |
73 |
46
|
zcnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( numer ` y ) e. CC ) |
74 |
50
|
zcnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( denom ` y ) e. CC ) |
75 |
71 72 73 74 41 51
|
divmuldivd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( numer ` x ) / ( denom ` x ) ) x. ( ( numer ` y ) / ( denom ` y ) ) ) = ( ( ( numer ` x ) x. ( numer ` y ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) |
76 |
70 75
|
eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( x x. y ) = ( ( ( numer ` x ) x. ( numer ` y ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) |
77 |
76
|
fveq2d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x x. y ) ) = ( ( QQHom ` R ) ` ( ( ( numer ` x ) x. ( numer ` y ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
78 |
33 46
|
zmulcld |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( numer ` x ) x. ( numer ` y ) ) e. ZZ ) |
79 |
40 50
|
zmulcld |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( denom ` x ) x. ( denom ` y ) ) e. ZZ ) |
80 |
72 74 41 51
|
mulne0d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( denom ` x ) x. ( denom ` y ) ) =/= 0 ) |
81 |
1 2 3
|
qqhvq |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( ( numer ` x ) x. ( numer ` y ) ) e. ZZ /\ ( ( denom ` x ) x. ( denom ` y ) ) e. ZZ /\ ( ( denom ` x ) x. ( denom ` y ) ) =/= 0 ) ) -> ( ( QQHom ` R ) ` ( ( ( numer ` x ) x. ( numer ` y ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( L ` ( ( numer ` x ) x. ( numer ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
82 |
37 78 79 80 81
|
syl13anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( ( ( numer ` x ) x. ( numer ` y ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( L ` ( ( numer ` x ) x. ( numer ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
83 |
35 19
|
syl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> R e. Ring ) |
84 |
83 27
|
syl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> L e. ( ZZring RingHom R ) ) |
85 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
86 |
28 85 12
|
rhmmul |
|- ( ( L e. ( ZZring RingHom R ) /\ ( numer ` x ) e. ZZ /\ ( numer ` y ) e. ZZ ) -> ( L ` ( ( numer ` x ) x. ( numer ` y ) ) ) = ( ( L ` ( numer ` x ) ) ( .r ` R ) ( L ` ( numer ` y ) ) ) ) |
87 |
84 33 46 86
|
syl3anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( numer ` x ) x. ( numer ` y ) ) ) = ( ( L ` ( numer ` x ) ) ( .r ` R ) ( L ` ( numer ` y ) ) ) ) |
88 |
28 85 12
|
rhmmul |
|- ( ( L e. ( ZZring RingHom R ) /\ ( denom ` x ) e. ZZ /\ ( denom ` y ) e. ZZ ) -> ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) = ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) ) |
89 |
84 40 50 88
|
syl3anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) = ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) ) |
90 |
87 89
|
oveq12d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( ( numer ` x ) x. ( numer ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( ( L ` ( numer ` x ) ) ( .r ` R ) ( L ` ( numer ` y ) ) ) ./ ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) ) ) |
91 |
77 82 90
|
3eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x x. y ) ) = ( ( ( L ` ( numer ` x ) ) ( .r ` R ) ( L ` ( numer ` y ) ) ) ./ ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) ) ) |
92 |
54 67 91
|
3eqtr4rd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x x. y ) ) = ( ( ( QQHom ` R ) ` x ) ( .r ` R ) ( ( QQHom ` R ) ` y ) ) ) |
93 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
94 |
4 93
|
ressplusg |
|- ( QQ e. _V -> + = ( +g ` Q ) ) |
95 |
8 94
|
ax-mp |
|- + = ( +g ` Q ) |
96 |
1 2 3
|
qqhf |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> B ) |
97 |
17 96
|
sylan |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> B ) |
98 |
33 50
|
zmulcld |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( numer ` x ) x. ( denom ` y ) ) e. ZZ ) |
99 |
31 98
|
ffvelrnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) e. B ) |
100 |
46 40
|
zmulcld |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( numer ` y ) x. ( denom ` x ) ) e. ZZ ) |
101 |
31 100
|
ffvelrnd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) e. B ) |
102 |
23 12
|
unitmulcl |
|- ( ( R e. Ring /\ ( L ` ( denom ` x ) ) e. ( Unit ` R ) /\ ( L ` ( denom ` y ) ) e. ( Unit ` R ) ) -> ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) e. ( Unit ` R ) ) |
103 |
83 44 53 102
|
syl3anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( denom ` x ) ) ( .r ` R ) ( L ` ( denom ` y ) ) ) e. ( Unit ` R ) ) |
104 |
89 103
|
eqeltrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) e. ( Unit ` R ) ) |
105 |
1 23 24 2
|
dvrdir |
|- ( ( R e. Ring /\ ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) e. B /\ ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) e. B /\ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) e. ( Unit ` R ) ) ) -> ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ( +g ` R ) ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) ) |
106 |
83 99 101 104 105
|
syl13anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ( +g ` R ) ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) ) |
107 |
68 69
|
oveq12d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) = ( ( ( numer ` x ) / ( denom ` x ) ) + ( ( numer ` y ) / ( denom ` y ) ) ) ) |
108 |
71 72 73 74 41 51
|
divadddivd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( numer ` x ) / ( denom ` x ) ) + ( ( numer ` y ) / ( denom ` y ) ) ) = ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) |
109 |
107 108
|
eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( x + y ) = ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) |
110 |
109
|
fveq2d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x + y ) ) = ( ( QQHom ` R ) ` ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
111 |
98 100
|
zaddcld |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) e. ZZ ) |
112 |
1 2 3
|
qqhvq |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) e. ZZ /\ ( ( denom ` x ) x. ( denom ` y ) ) e. ZZ /\ ( ( denom ` x ) x. ( denom ` y ) ) =/= 0 ) ) -> ( ( QQHom ` R ) ` ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( L ` ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
113 |
37 111 79 80 112
|
syl13anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) / ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( L ` ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
114 |
|
rhmghm |
|- ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) ) |
115 |
84 114
|
syl |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> L e. ( ZZring GrpHom R ) ) |
116 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
117 |
28 116 24
|
ghmlin |
|- ( ( L e. ( ZZring GrpHom R ) /\ ( ( numer ` x ) x. ( denom ` y ) ) e. ZZ /\ ( ( numer ` y ) x. ( denom ` x ) ) e. ZZ ) -> ( L ` ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) ) = ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ) |
118 |
117
|
oveq1d |
|- ( ( L e. ( ZZring GrpHom R ) /\ ( ( numer ` x ) x. ( denom ` y ) ) e. ZZ /\ ( ( numer ` y ) x. ( denom ` x ) ) e. ZZ ) -> ( ( L ` ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
119 |
115 98 100 118
|
syl3anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( ( ( numer ` x ) x. ( denom ` y ) ) + ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
120 |
110 113 119
|
3eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x + y ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ( +g ` R ) ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
121 |
23 28 2 85
|
rhmdvd |
|- ( ( L e. ( ZZring RingHom R ) /\ ( ( numer ` x ) e. ZZ /\ ( denom ` x ) e. ZZ /\ ( denom ` y ) e. ZZ ) /\ ( ( L ` ( denom ` x ) ) e. ( Unit ` R ) /\ ( L ` ( denom ` y ) ) e. ( Unit ` R ) ) ) -> ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) = ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
122 |
84 33 40 50 44 53 121
|
syl132anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( numer ` x ) ) ./ ( L ` ( denom ` x ) ) ) = ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
123 |
57 59 122
|
3eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` x ) = ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
124 |
23 28 2 85
|
rhmdvd |
|- ( ( L e. ( ZZring RingHom R ) /\ ( ( numer ` y ) e. ZZ /\ ( denom ` y ) e. ZZ /\ ( denom ` x ) e. ZZ ) /\ ( ( L ` ( denom ` y ) ) e. ( Unit ` R ) /\ ( L ` ( denom ` x ) ) e. ( Unit ` R ) ) ) -> ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) = ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` y ) x. ( denom ` x ) ) ) ) ) |
125 |
84 46 50 40 53 44 124
|
syl132anc |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( numer ` y ) ) ./ ( L ` ( denom ` y ) ) ) = ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` y ) x. ( denom ` x ) ) ) ) ) |
126 |
72 74
|
mulcomd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( denom ` x ) x. ( denom ` y ) ) = ( ( denom ` y ) x. ( denom ` x ) ) ) |
127 |
126
|
fveq2d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) = ( L ` ( ( denom ` y ) x. ( denom ` x ) ) ) ) |
128 |
127
|
oveq2d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) = ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` y ) x. ( denom ` x ) ) ) ) ) |
129 |
125 65 128
|
3eqtr4d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( ( numer ` y ) / ( denom ` y ) ) ) = ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
130 |
63 129
|
eqtrd |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` y ) = ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) |
131 |
123 130
|
oveq12d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( ( QQHom ` R ) ` x ) ( +g ` R ) ( ( QQHom ` R ) ` y ) ) = ( ( ( L ` ( ( numer ` x ) x. ( denom ` y ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ( +g ` R ) ( ( L ` ( ( numer ` y ) x. ( denom ` x ) ) ) ./ ( L ` ( ( denom ` x ) x. ( denom ` y ) ) ) ) ) ) |
132 |
106 120 131
|
3eqtr4d |
|- ( ( ( R e. Field /\ ( chr ` R ) = 0 ) /\ ( x e. QQ /\ y e. QQ ) ) -> ( ( QQHom ` R ) ` ( x + y ) ) = ( ( ( QQHom ` R ) ` x ) ( +g ` R ) ( ( QQHom ` R ) ` y ) ) ) |
133 |
5 6 7 11 12 15 20 22 92 1 95 24 97 132
|
isrhmd |
|- ( ( R e. Field /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( Q RingHom R ) ) |