Step |
Hyp |
Ref |
Expression |
1 |
|
dvrdir.b |
|- B = ( Base ` R ) |
2 |
|
dvrdir.u |
|- U = ( Unit ` R ) |
3 |
|
dvrdir.p |
|- .+ = ( +g ` R ) |
4 |
|
dvrdir.t |
|- ./ = ( /r ` R ) |
5 |
|
rdivmuldivd.p |
|- .x. = ( .r ` R ) |
6 |
|
rdivmuldivd.r |
|- ( ph -> R e. CRing ) |
7 |
|
rdivmuldivd.a |
|- ( ph -> X e. B ) |
8 |
|
rdivmuldivd.b |
|- ( ph -> Y e. U ) |
9 |
|
rdivmuldivd.c |
|- ( ph -> Z e. B ) |
10 |
|
rdivmuldivd.d |
|- ( ph -> W e. U ) |
11 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
12 |
1 5 2 11 4
|
dvrval |
|- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( ( invr ` R ) ` Y ) ) ) |
13 |
12
|
oveq1d |
|- ( ( X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
14 |
7 8 13
|
syl2anc |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
15 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
16 |
6 15
|
syl |
|- ( ph -> R e. Ring ) |
17 |
1 2
|
unitss |
|- U C_ B |
18 |
2 11
|
unitinvcl |
|- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
19 |
16 8 18
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` Y ) e. U ) |
20 |
17 19
|
sselid |
|- ( ph -> ( ( invr ` R ) ` Y ) e. B ) |
21 |
1 2 4
|
dvrcl |
|- ( ( R e. Ring /\ Z e. B /\ W e. U ) -> ( Z ./ W ) e. B ) |
22 |
16 9 10 21
|
syl3anc |
|- ( ph -> ( Z ./ W ) e. B ) |
23 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
24 |
16 7 20 22 23
|
syl13anc |
|- ( ph -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
25 |
1 5
|
crngcom |
|- ( ( R e. CRing /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
26 |
6 20 22 25
|
syl3anc |
|- ( ph -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
27 |
26
|
oveq2d |
|- ( ph -> ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
28 |
14 24 27
|
3eqtrd |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
29 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
30 |
2 29
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
31 |
16 30
|
syl |
|- ( ph -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
32 |
2 29
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
33 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
34 |
2 29 11
|
invrfval |
|- ( invr ` R ) = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
35 |
32 33 34
|
grpinvadd |
|- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ Y e. U /\ W e. U ) -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
36 |
31 8 10 35
|
syl3anc |
|- ( ph -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
37 |
|
eqid |
|- ( mulGrp ` ( R |`s U ) ) = ( mulGrp ` ( R |`s U ) ) |
38 |
2
|
fvexi |
|- U e. _V |
39 |
|
eqid |
|- ( R |`s U ) = ( R |`s U ) |
40 |
39 5
|
ressmulr |
|- ( U e. _V -> .x. = ( .r ` ( R |`s U ) ) ) |
41 |
38 40
|
ax-mp |
|- .x. = ( .r ` ( R |`s U ) ) |
42 |
37 41
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` ( R |`s U ) ) ) |
43 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
44 |
39 43
|
mgpress |
|- ( ( R e. Ring /\ U e. _V ) -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
45 |
16 38 44
|
sylancl |
|- ( ph -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
46 |
45
|
fveq2d |
|- ( ph -> ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( mulGrp ` ( R |`s U ) ) ) ) |
47 |
42 46
|
eqtr4id |
|- ( ph -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
48 |
47
|
oveqd |
|- ( ph -> ( Y .x. W ) = ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) |
49 |
48
|
fveq2d |
|- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) ) |
50 |
47
|
oveqd |
|- ( ph -> ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
51 |
36 49 50
|
3eqtr4d |
|- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) |
52 |
51
|
oveq2d |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
53 |
1 5
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
54 |
16 7 9 53
|
syl3anc |
|- ( ph -> ( X .x. Z ) e. B ) |
55 |
2 5
|
unitmulcl |
|- ( ( R e. Ring /\ Y e. U /\ W e. U ) -> ( Y .x. W ) e. U ) |
56 |
16 8 10 55
|
syl3anc |
|- ( ph -> ( Y .x. W ) e. U ) |
57 |
1 5 2 11 4
|
dvrval |
|- ( ( ( X .x. Z ) e. B /\ ( Y .x. W ) e. U ) -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
58 |
54 56 57
|
syl2anc |
|- ( ph -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
59 |
2 11
|
unitinvcl |
|- ( ( R e. Ring /\ W e. U ) -> ( ( invr ` R ) ` W ) e. U ) |
60 |
16 10 59
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` W ) e. U ) |
61 |
17 60
|
sselid |
|- ( ph -> ( ( invr ` R ) ` W ) e. B ) |
62 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ Z e. B /\ ( ( invr ` R ) ` W ) e. B ) ) -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
63 |
16 7 9 61 62
|
syl13anc |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
64 |
1 5 2 11 4
|
dvrval |
|- ( ( Z e. B /\ W e. U ) -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
65 |
9 10 64
|
syl2anc |
|- ( ph -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
66 |
65
|
oveq2d |
|- ( ph -> ( X .x. ( Z ./ W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
67 |
63 66
|
eqtr4d |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z ./ W ) ) ) |
68 |
67
|
oveq1d |
|- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) ) |
69 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( ( X .x. Z ) e. B /\ ( ( invr ` R ) ` W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
70 |
16 54 61 20 69
|
syl13anc |
|- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
71 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ ( Z ./ W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
72 |
16 7 22 20 71
|
syl13anc |
|- ( ph -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
73 |
68 70 72
|
3eqtr3rd |
|- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
74 |
52 58 73
|
3eqtr4rd |
|- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |
75 |
28 74
|
eqtrd |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |