| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrdir.b |
|- B = ( Base ` R ) |
| 2 |
|
dvrdir.u |
|- U = ( Unit ` R ) |
| 3 |
|
dvrdir.p |
|- .+ = ( +g ` R ) |
| 4 |
|
dvrdir.t |
|- ./ = ( /r ` R ) |
| 5 |
|
rdivmuldivd.p |
|- .x. = ( .r ` R ) |
| 6 |
|
rdivmuldivd.r |
|- ( ph -> R e. CRing ) |
| 7 |
|
rdivmuldivd.a |
|- ( ph -> X e. B ) |
| 8 |
|
rdivmuldivd.b |
|- ( ph -> Y e. U ) |
| 9 |
|
rdivmuldivd.c |
|- ( ph -> Z e. B ) |
| 10 |
|
rdivmuldivd.d |
|- ( ph -> W e. U ) |
| 11 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 12 |
1 5 2 11 4
|
dvrval |
|- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( ( invr ` R ) ` Y ) ) ) |
| 13 |
12
|
oveq1d |
|- ( ( X e. B /\ Y e. U ) -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
| 14 |
7 8 13
|
syl2anc |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) ) |
| 15 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 16 |
6 15
|
syl |
|- ( ph -> R e. Ring ) |
| 17 |
1 2
|
unitss |
|- U C_ B |
| 18 |
2 11
|
unitinvcl |
|- ( ( R e. Ring /\ Y e. U ) -> ( ( invr ` R ) ` Y ) e. U ) |
| 19 |
16 8 18
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` Y ) e. U ) |
| 20 |
17 19
|
sselid |
|- ( ph -> ( ( invr ` R ) ` Y ) e. B ) |
| 21 |
1 2 4
|
dvrcl |
|- ( ( R e. Ring /\ Z e. B /\ W e. U ) -> ( Z ./ W ) e. B ) |
| 22 |
16 9 10 21
|
syl3anc |
|- ( ph -> ( Z ./ W ) e. B ) |
| 23 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) ) -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
| 24 |
16 7 20 22 23
|
syl13anc |
|- ( ph -> ( ( X .x. ( ( invr ` R ) ` Y ) ) .x. ( Z ./ W ) ) = ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) ) |
| 25 |
1 5
|
crngcom |
|- ( ( R e. CRing /\ ( ( invr ` R ) ` Y ) e. B /\ ( Z ./ W ) e. B ) -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 26 |
6 20 22 25
|
syl3anc |
|- ( ph -> ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) = ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( X .x. ( ( ( invr ` R ) ` Y ) .x. ( Z ./ W ) ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 28 |
14 24 27
|
3eqtrd |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 29 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
| 30 |
2 29
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 31 |
16 30
|
syl |
|- ( ph -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 32 |
2 29
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 33 |
|
eqid |
|- ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
| 34 |
2 29 11
|
invrfval |
|- ( invr ` R ) = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 35 |
32 33 34
|
grpinvadd |
|- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ Y e. U /\ W e. U ) -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 36 |
31 8 10 35
|
syl3anc |
|- ( ph -> ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 37 |
|
eqid |
|- ( mulGrp ` ( R |`s U ) ) = ( mulGrp ` ( R |`s U ) ) |
| 38 |
2
|
fvexi |
|- U e. _V |
| 39 |
|
eqid |
|- ( R |`s U ) = ( R |`s U ) |
| 40 |
39 5
|
ressmulr |
|- ( U e. _V -> .x. = ( .r ` ( R |`s U ) ) ) |
| 41 |
38 40
|
ax-mp |
|- .x. = ( .r ` ( R |`s U ) ) |
| 42 |
37 41
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` ( R |`s U ) ) ) |
| 43 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 44 |
39 43
|
mgpress |
|- ( ( R e. Ring /\ U e. _V ) -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
| 45 |
16 38 44
|
sylancl |
|- ( ph -> ( ( mulGrp ` R ) |`s U ) = ( mulGrp ` ( R |`s U ) ) ) |
| 46 |
45
|
fveq2d |
|- ( ph -> ( +g ` ( ( mulGrp ` R ) |`s U ) ) = ( +g ` ( mulGrp ` ( R |`s U ) ) ) ) |
| 47 |
42 46
|
eqtr4id |
|- ( ph -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 48 |
47
|
oveqd |
|- ( ph -> ( Y .x. W ) = ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) |
| 49 |
48
|
fveq2d |
|- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( invr ` R ) ` ( Y ( +g ` ( ( mulGrp ` R ) |`s U ) ) W ) ) ) |
| 50 |
47
|
oveqd |
|- ( ph -> ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) = ( ( ( invr ` R ) ` W ) ( +g ` ( ( mulGrp ` R ) |`s U ) ) ( ( invr ` R ) ` Y ) ) ) |
| 51 |
36 49 50
|
3eqtr4d |
|- ( ph -> ( ( invr ` R ) ` ( Y .x. W ) ) = ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 52 |
51
|
oveq2d |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 53 |
1 5
|
ringcl |
|- ( ( R e. Ring /\ X e. B /\ Z e. B ) -> ( X .x. Z ) e. B ) |
| 54 |
16 7 9 53
|
syl3anc |
|- ( ph -> ( X .x. Z ) e. B ) |
| 55 |
2 5
|
unitmulcl |
|- ( ( R e. Ring /\ Y e. U /\ W e. U ) -> ( Y .x. W ) e. U ) |
| 56 |
16 8 10 55
|
syl3anc |
|- ( ph -> ( Y .x. W ) e. U ) |
| 57 |
1 5 2 11 4
|
dvrval |
|- ( ( ( X .x. Z ) e. B /\ ( Y .x. W ) e. U ) -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
| 58 |
54 56 57
|
syl2anc |
|- ( ph -> ( ( X .x. Z ) ./ ( Y .x. W ) ) = ( ( X .x. Z ) .x. ( ( invr ` R ) ` ( Y .x. W ) ) ) ) |
| 59 |
2 11
|
unitinvcl |
|- ( ( R e. Ring /\ W e. U ) -> ( ( invr ` R ) ` W ) e. U ) |
| 60 |
16 10 59
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` W ) e. U ) |
| 61 |
17 60
|
sselid |
|- ( ph -> ( ( invr ` R ) ` W ) e. B ) |
| 62 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ Z e. B /\ ( ( invr ` R ) ` W ) e. B ) ) -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 63 |
16 7 9 61 62
|
syl13anc |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 64 |
1 5 2 11 4
|
dvrval |
|- ( ( Z e. B /\ W e. U ) -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
| 65 |
9 10 64
|
syl2anc |
|- ( ph -> ( Z ./ W ) = ( Z .x. ( ( invr ` R ) ` W ) ) ) |
| 66 |
65
|
oveq2d |
|- ( ph -> ( X .x. ( Z ./ W ) ) = ( X .x. ( Z .x. ( ( invr ` R ) ` W ) ) ) ) |
| 67 |
63 66
|
eqtr4d |
|- ( ph -> ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) = ( X .x. ( Z ./ W ) ) ) |
| 68 |
67
|
oveq1d |
|- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) ) |
| 69 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( ( X .x. Z ) e. B /\ ( ( invr ` R ) ` W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 70 |
16 54 61 20 69
|
syl13anc |
|- ( ph -> ( ( ( X .x. Z ) .x. ( ( invr ` R ) ` W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 71 |
1 5
|
ringass |
|- ( ( R e. Ring /\ ( X e. B /\ ( Z ./ W ) e. B /\ ( ( invr ` R ) ` Y ) e. B ) ) -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 72 |
16 7 22 20 71
|
syl13anc |
|- ( ph -> ( ( X .x. ( Z ./ W ) ) .x. ( ( invr ` R ) ` Y ) ) = ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 73 |
68 70 72
|
3eqtr3rd |
|- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) .x. ( ( ( invr ` R ) ` W ) .x. ( ( invr ` R ) ` Y ) ) ) ) |
| 74 |
52 58 73
|
3eqtr4rd |
|- ( ph -> ( X .x. ( ( Z ./ W ) .x. ( ( invr ` R ) ` Y ) ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |
| 75 |
28 74
|
eqtrd |
|- ( ph -> ( ( X ./ Y ) .x. ( Z ./ W ) ) = ( ( X .x. Z ) ./ ( Y .x. W ) ) ) |