| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvrval.b |
|- B = ( Base ` R ) |
| 2 |
|
dvrval.t |
|- .x. = ( .r ` R ) |
| 3 |
|
dvrval.u |
|- U = ( Unit ` R ) |
| 4 |
|
dvrval.i |
|- I = ( invr ` R ) |
| 5 |
|
dvrval.d |
|- ./ = ( /r ` R ) |
| 6 |
|
oveq1 |
|- ( x = X -> ( x .x. ( I ` y ) ) = ( X .x. ( I ` y ) ) ) |
| 7 |
|
fveq2 |
|- ( y = Y -> ( I ` y ) = ( I ` Y ) ) |
| 8 |
7
|
oveq2d |
|- ( y = Y -> ( X .x. ( I ` y ) ) = ( X .x. ( I ` Y ) ) ) |
| 9 |
1 2 3 4 5
|
dvrfval |
|- ./ = ( x e. B , y e. U |-> ( x .x. ( I ` y ) ) ) |
| 10 |
|
ovex |
|- ( X .x. ( I ` Y ) ) e. _V |
| 11 |
6 8 9 10
|
ovmpo |
|- ( ( X e. B /\ Y e. U ) -> ( X ./ Y ) = ( X .x. ( I ` Y ) ) ) |