Step |
Hyp |
Ref |
Expression |
1 |
|
qqhnm.n |
|- N = ( norm ` R ) |
2 |
|
qqhnm.z |
|- Z = ( ZMod ` R ) |
3 |
|
simpr |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Q e. QQ ) |
4 |
|
qeqnumdivden |
|- ( Q e. QQ -> Q = ( ( numer ` Q ) / ( denom ` Q ) ) ) |
5 |
4
|
fveq2d |
|- ( Q e. QQ -> ( abs ` Q ) = ( abs ` ( ( numer ` Q ) / ( denom ` Q ) ) ) ) |
6 |
3 5
|
syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( abs ` Q ) = ( abs ` ( ( numer ` Q ) / ( denom ` Q ) ) ) ) |
7 |
|
qnumcl |
|- ( Q e. QQ -> ( numer ` Q ) e. ZZ ) |
8 |
3 7
|
syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( numer ` Q ) e. ZZ ) |
9 |
8
|
zcnd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( numer ` Q ) e. CC ) |
10 |
|
qdencl |
|- ( Q e. QQ -> ( denom ` Q ) e. NN ) |
11 |
3 10
|
syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( denom ` Q ) e. NN ) |
12 |
11
|
nncnd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( denom ` Q ) e. CC ) |
13 |
|
nnne0 |
|- ( ( denom ` Q ) e. NN -> ( denom ` Q ) =/= 0 ) |
14 |
3 10 13
|
3syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( denom ` Q ) =/= 0 ) |
15 |
9 12 14
|
absdivd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( abs ` ( ( numer ` Q ) / ( denom ` Q ) ) ) = ( ( abs ` ( numer ` Q ) ) / ( abs ` ( denom ` Q ) ) ) ) |
16 |
|
inss2 |
|- ( NrmRing i^i DivRing ) C_ DivRing |
17 |
|
simpl1 |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> R e. ( NrmRing i^i DivRing ) ) |
18 |
16 17
|
sselid |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> R e. DivRing ) |
19 |
|
simpl3 |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( chr ` R ) = 0 ) |
20 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
21 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
22 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
23 |
20 21 22
|
qqhvval |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( QQHom ` R ) ` Q ) = ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) ( /r ` R ) ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) |
24 |
23
|
fveq2d |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( QQHom ` R ) ` Q ) ) = ( N ` ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) ( /r ` R ) ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) ) |
25 |
18 19 3 24
|
syl21anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( QQHom ` R ) ` Q ) ) = ( N ` ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) ( /r ` R ) ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) ) |
26 |
|
inss1 |
|- ( NrmRing i^i DivRing ) C_ NrmRing |
27 |
26 17
|
sselid |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> R e. NrmRing ) |
28 |
|
drngnzr |
|- ( R e. DivRing -> R e. NzRing ) |
29 |
18 28
|
syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> R e. NzRing ) |
30 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
31 |
22
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
32 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
33 |
32 20
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
34 |
18 30 31 33
|
4syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
35 |
34 8
|
ffvelrnd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( ZRHom ` R ) ` ( numer ` Q ) ) e. ( Base ` R ) ) |
36 |
11
|
nnzd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( denom ` Q ) e. ZZ ) |
37 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
38 |
20 22 37
|
elzrhunit |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( ( denom ` Q ) e. ZZ /\ ( denom ` Q ) =/= 0 ) ) -> ( ( ZRHom ` R ) ` ( denom ` Q ) ) e. ( Unit ` R ) ) |
39 |
18 19 36 14 38
|
syl22anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( ZRHom ` R ) ` ( denom ` Q ) ) e. ( Unit ` R ) ) |
40 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
41 |
20 1 40 21
|
nmdvr |
|- ( ( ( R e. NrmRing /\ R e. NzRing ) /\ ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) e. ( Base ` R ) /\ ( ( ZRHom ` R ) ` ( denom ` Q ) ) e. ( Unit ` R ) ) ) -> ( N ` ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) ( /r ` R ) ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) = ( ( N ` ( ( ZRHom ` R ) ` ( numer ` Q ) ) ) / ( N ` ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) ) |
42 |
27 29 35 39 41
|
syl22anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( ( ZRHom ` R ) ` ( numer ` Q ) ) ( /r ` R ) ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) = ( ( N ` ( ( ZRHom ` R ) ` ( numer ` Q ) ) ) / ( N ` ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) ) |
43 |
|
simpl2 |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Z e. NrmMod ) |
44 |
2
|
zhmnrg |
|- ( R e. NrmRing -> Z e. NrmRing ) |
45 |
27 44
|
syl |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> Z e. NrmRing ) |
46 |
20 1 2 22
|
zrhnm |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ ( numer ` Q ) e. ZZ ) -> ( N ` ( ( ZRHom ` R ) ` ( numer ` Q ) ) ) = ( abs ` ( numer ` Q ) ) ) |
47 |
43 45 29 8 46
|
syl31anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( ZRHom ` R ) ` ( numer ` Q ) ) ) = ( abs ` ( numer ` Q ) ) ) |
48 |
20 1 2 22
|
zrhnm |
|- ( ( ( Z e. NrmMod /\ Z e. NrmRing /\ R e. NzRing ) /\ ( denom ` Q ) e. ZZ ) -> ( N ` ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) = ( abs ` ( denom ` Q ) ) ) |
49 |
43 45 29 36 48
|
syl31anc |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) = ( abs ` ( denom ` Q ) ) ) |
50 |
47 49
|
oveq12d |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( N ` ( ( ZRHom ` R ) ` ( numer ` Q ) ) ) / ( N ` ( ( ZRHom ` R ) ` ( denom ` Q ) ) ) ) = ( ( abs ` ( numer ` Q ) ) / ( abs ` ( denom ` Q ) ) ) ) |
51 |
25 42 50
|
3eqtrrd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( ( abs ` ( numer ` Q ) ) / ( abs ` ( denom ` Q ) ) ) = ( N ` ( ( QQHom ` R ) ` Q ) ) ) |
52 |
6 15 51
|
3eqtrrd |
|- ( ( ( R e. ( NrmRing i^i DivRing ) /\ Z e. NrmMod /\ ( chr ` R ) = 0 ) /\ Q e. QQ ) -> ( N ` ( ( QQHom ` R ) ` Q ) ) = ( abs ` Q ) ) |