Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
2
|
a1i |
|- ( G e. NrmRing -> ( Base ` G ) = ( Base ` G ) ) |
4 |
1 2
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
5 |
4
|
a1i |
|- ( G e. NrmRing -> ( Base ` G ) = ( Base ` W ) ) |
6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
7 |
1 6
|
zlmplusg |
|- ( +g ` G ) = ( +g ` W ) |
8 |
7
|
a1i |
|- ( G e. NrmRing -> ( +g ` G ) = ( +g ` W ) ) |
9 |
8
|
oveqdr |
|- ( ( G e. NrmRing /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` W ) y ) ) |
10 |
3 5 9
|
grppropd |
|- ( G e. NrmRing -> ( G e. Grp <-> W e. Grp ) ) |
11 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
12 |
1 11
|
zlmds |
|- ( G e. NrmRing -> ( dist ` G ) = ( dist ` W ) ) |
13 |
12
|
reseq1d |
|- ( G e. NrmRing -> ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) = ( ( dist ` W ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) ) |
14 |
|
eqid |
|- ( TopSet ` G ) = ( TopSet ` G ) |
15 |
1 14
|
zlmtset |
|- ( G e. NrmRing -> ( TopSet ` G ) = ( TopSet ` W ) ) |
16 |
5 15
|
topnpropd |
|- ( G e. NrmRing -> ( TopOpen ` G ) = ( TopOpen ` W ) ) |
17 |
3 5 13 16
|
mspropd |
|- ( G e. NrmRing -> ( G e. MetSp <-> W e. MetSp ) ) |
18 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
19 |
1 18
|
zlmnm |
|- ( G e. NrmRing -> ( norm ` G ) = ( norm ` W ) ) |
20 |
5 8
|
grpsubpropd |
|- ( G e. NrmRing -> ( -g ` G ) = ( -g ` W ) ) |
21 |
19 20
|
coeq12d |
|- ( G e. NrmRing -> ( ( norm ` G ) o. ( -g ` G ) ) = ( ( norm ` W ) o. ( -g ` W ) ) ) |
22 |
21 12
|
sseq12d |
|- ( G e. NrmRing -> ( ( ( norm ` G ) o. ( -g ` G ) ) C_ ( dist ` G ) <-> ( ( norm ` W ) o. ( -g ` W ) ) C_ ( dist ` W ) ) ) |
23 |
10 17 22
|
3anbi123d |
|- ( G e. NrmRing -> ( ( G e. Grp /\ G e. MetSp /\ ( ( norm ` G ) o. ( -g ` G ) ) C_ ( dist ` G ) ) <-> ( W e. Grp /\ W e. MetSp /\ ( ( norm ` W ) o. ( -g ` W ) ) C_ ( dist ` W ) ) ) ) |
24 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
25 |
18 24 11
|
isngp |
|- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( ( norm ` G ) o. ( -g ` G ) ) C_ ( dist ` G ) ) ) |
26 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
27 |
|
eqid |
|- ( -g ` W ) = ( -g ` W ) |
28 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
29 |
26 27 28
|
isngp |
|- ( W e. NrmGrp <-> ( W e. Grp /\ W e. MetSp /\ ( ( norm ` W ) o. ( -g ` W ) ) C_ ( dist ` W ) ) ) |
30 |
23 25 29
|
3bitr4g |
|- ( G e. NrmRing -> ( G e. NrmGrp <-> W e. NrmGrp ) ) |
31 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
32 |
1 31
|
zlmmulr |
|- ( .r ` G ) = ( .r ` W ) |
33 |
32
|
a1i |
|- ( G e. NrmRing -> ( .r ` G ) = ( .r ` W ) ) |
34 |
5 8 33
|
abvpropd2 |
|- ( G e. NrmRing -> ( AbsVal ` G ) = ( AbsVal ` W ) ) |
35 |
19 34
|
eleq12d |
|- ( G e. NrmRing -> ( ( norm ` G ) e. ( AbsVal ` G ) <-> ( norm ` W ) e. ( AbsVal ` W ) ) ) |
36 |
30 35
|
anbi12d |
|- ( G e. NrmRing -> ( ( G e. NrmGrp /\ ( norm ` G ) e. ( AbsVal ` G ) ) <-> ( W e. NrmGrp /\ ( norm ` W ) e. ( AbsVal ` W ) ) ) ) |
37 |
|
eqid |
|- ( AbsVal ` G ) = ( AbsVal ` G ) |
38 |
18 37
|
isnrg |
|- ( G e. NrmRing <-> ( G e. NrmGrp /\ ( norm ` G ) e. ( AbsVal ` G ) ) ) |
39 |
|
eqid |
|- ( AbsVal ` W ) = ( AbsVal ` W ) |
40 |
26 39
|
isnrg |
|- ( W e. NrmRing <-> ( W e. NrmGrp /\ ( norm ` W ) e. ( AbsVal ` W ) ) ) |
41 |
36 38 40
|
3bitr4g |
|- ( G e. NrmRing -> ( G e. NrmRing <-> W e. NrmRing ) ) |
42 |
41
|
ibi |
|- ( G e. NrmRing -> W e. NrmRing ) |