| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
| 2 |
|
zlmnm.1 |
|- N = ( norm ` G ) |
| 3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 4 |
1 3
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
| 5 |
4
|
a1i |
|- ( G e. V -> ( Base ` G ) = ( Base ` W ) ) |
| 6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 7 |
1 6
|
zlmplusg |
|- ( +g ` G ) = ( +g ` W ) |
| 8 |
7
|
a1i |
|- ( G e. V -> ( +g ` G ) = ( +g ` W ) ) |
| 9 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 10 |
1 9
|
zlmds |
|- ( G e. V -> ( dist ` G ) = ( dist ` W ) ) |
| 11 |
5 8 10
|
nmpropd |
|- ( G e. V -> ( norm ` G ) = ( norm ` W ) ) |
| 12 |
2 11
|
eqtrid |
|- ( G e. V -> N = ( norm ` W ) ) |