Metamath Proof Explorer


Theorem zlmnm

Description: Norm of a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1
|- W = ( ZMod ` G )
zlmnm.1
|- N = ( norm ` G )
Assertion zlmnm
|- ( G e. V -> N = ( norm ` W ) )

Proof

Step Hyp Ref Expression
1 zlmlem2.1
 |-  W = ( ZMod ` G )
2 zlmnm.1
 |-  N = ( norm ` G )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 1 3 zlmbas
 |-  ( Base ` G ) = ( Base ` W )
5 4 a1i
 |-  ( G e. V -> ( Base ` G ) = ( Base ` W ) )
6 eqid
 |-  ( +g ` G ) = ( +g ` G )
7 1 6 zlmplusg
 |-  ( +g ` G ) = ( +g ` W )
8 7 a1i
 |-  ( G e. V -> ( +g ` G ) = ( +g ` W ) )
9 eqid
 |-  ( dist ` G ) = ( dist ` G )
10 1 9 zlmds
 |-  ( G e. V -> ( dist ` G ) = ( dist ` W ) )
11 5 8 10 nmpropd
 |-  ( G e. V -> ( norm ` G ) = ( norm ` W ) )
12 2 11 syl5eq
 |-  ( G e. V -> N = ( norm ` W ) )