Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
2 |
|
zlmds.1 |
|- D = ( dist ` G ) |
3 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
4 |
1 3
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
5 |
4
|
fveq2d |
|- ( G e. V -> ( dist ` W ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
6 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
7 |
|
slotsdnscsi |
|- ( ( dist ` ndx ) =/= ( Scalar ` ndx ) /\ ( dist ` ndx ) =/= ( .s ` ndx ) /\ ( dist ` ndx ) =/= ( .i ` ndx ) ) |
8 |
7
|
simp1i |
|- ( dist ` ndx ) =/= ( Scalar ` ndx ) |
9 |
6 8
|
setsnid |
|- ( dist ` G ) = ( dist ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
10 |
7
|
simp2i |
|- ( dist ` ndx ) =/= ( .s ` ndx ) |
11 |
6 10
|
setsnid |
|- ( dist ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
12 |
9 11
|
eqtri |
|- ( dist ` G ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
13 |
5 12
|
eqtr4di |
|- ( G e. V -> ( dist ` W ) = ( dist ` G ) ) |
14 |
2 13
|
eqtr4id |
|- ( G e. V -> D = ( dist ` W ) ) |