Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
2 |
|
zlmds.1 |
|- D = ( dist ` G ) |
3 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
4 |
1 3
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
5 |
4
|
fveq2d |
|- ( G e. V -> ( dist ` W ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
6 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
7 |
|
5re |
|- 5 e. RR |
8 |
|
1nn |
|- 1 e. NN |
9 |
|
2nn0 |
|- 2 e. NN0 |
10 |
|
5nn0 |
|- 5 e. NN0 |
11 |
|
5lt10 |
|- 5 < ; 1 0 |
12 |
8 9 10 11
|
declti |
|- 5 < ; 1 2 |
13 |
7 12
|
gtneii |
|- ; 1 2 =/= 5 |
14 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
15 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
16 |
14 15
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( Scalar ` ndx ) <-> ; 1 2 =/= 5 ) |
17 |
13 16
|
mpbir |
|- ( dist ` ndx ) =/= ( Scalar ` ndx ) |
18 |
6 17
|
setsnid |
|- ( dist ` G ) = ( dist ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
19 |
|
6re |
|- 6 e. RR |
20 |
|
6nn0 |
|- 6 e. NN0 |
21 |
|
6lt10 |
|- 6 < ; 1 0 |
22 |
8 9 20 21
|
declti |
|- 6 < ; 1 2 |
23 |
19 22
|
gtneii |
|- ; 1 2 =/= 6 |
24 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
25 |
14 24
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( .s ` ndx ) <-> ; 1 2 =/= 6 ) |
26 |
23 25
|
mpbir |
|- ( dist ` ndx ) =/= ( .s ` ndx ) |
27 |
6 26
|
setsnid |
|- ( dist ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
28 |
18 27
|
eqtri |
|- ( dist ` G ) = ( dist ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
29 |
5 28
|
eqtr4di |
|- ( G e. V -> ( dist ` W ) = ( dist ` G ) ) |
30 |
2 29
|
eqtr4id |
|- ( G e. V -> D = ( dist ` W ) ) |