Metamath Proof Explorer


Theorem zlmds

Description: Distance in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
zlmds.1 𝐷 = ( dist ‘ 𝐺 )
Assertion zlmds ( 𝐺𝑉𝐷 = ( dist ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmds.1 𝐷 = ( dist ‘ 𝐺 )
3 eqid ( .g𝐺 ) = ( .g𝐺 )
4 1 3 zlmval ( 𝐺𝑉𝑊 = ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
5 4 fveq2d ( 𝐺𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) ) )
6 dsid dist = Slot ( dist ‘ ndx )
7 5re 5 ∈ ℝ
8 1nn 1 ∈ ℕ
9 2nn0 2 ∈ ℕ0
10 5nn0 5 ∈ ℕ0
11 5lt10 5 < 1 0
12 8 9 10 11 declti 5 < 1 2
13 7 12 gtneii 1 2 ≠ 5
14 dsndx ( dist ‘ ndx ) = 1 2
15 scandx ( Scalar ‘ ndx ) = 5
16 14 15 neeq12i ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 1 2 ≠ 5 )
17 13 16 mpbir ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx )
18 6 17 setsnid ( dist ‘ 𝐺 ) = ( dist ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) )
19 6re 6 ∈ ℝ
20 6nn0 6 ∈ ℕ0
21 6lt10 6 < 1 0
22 8 9 20 21 declti 6 < 1 2
23 19 22 gtneii 1 2 ≠ 6
24 vscandx ( ·𝑠 ‘ ndx ) = 6
25 14 24 neeq12i ( ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 1 2 ≠ 6 )
26 23 25 mpbir ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
27 6 26 setsnid ( dist ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) ) = ( dist ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
28 18 27 eqtri ( dist ‘ 𝐺 ) = ( dist ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
29 5 28 eqtr4di ( 𝐺𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐺 ) )
30 2 29 eqtr4id ( 𝐺𝑉𝐷 = ( dist ‘ 𝑊 ) )