Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmds.1 |
⊢ 𝐷 = ( dist ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
4 |
1 3
|
zlmval |
⊢ ( 𝐺 ∈ 𝑉 → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
5 |
4
|
fveq2d |
⊢ ( 𝐺 ∈ 𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
6 |
|
dsid |
⊢ dist = Slot ( dist ‘ ndx ) |
7 |
|
5re |
⊢ 5 ∈ ℝ |
8 |
|
1nn |
⊢ 1 ∈ ℕ |
9 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
10 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
11 |
|
5lt10 |
⊢ 5 < ; 1 0 |
12 |
8 9 10 11
|
declti |
⊢ 5 < ; 1 2 |
13 |
7 12
|
gtneii |
⊢ ; 1 2 ≠ 5 |
14 |
|
dsndx |
⊢ ( dist ‘ ndx ) = ; 1 2 |
15 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
16 |
14 15
|
neeq12i |
⊢ ( ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ ; 1 2 ≠ 5 ) |
17 |
13 16
|
mpbir |
⊢ ( dist ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
18 |
6 17
|
setsnid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) |
19 |
|
6re |
⊢ 6 ∈ ℝ |
20 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
21 |
|
6lt10 |
⊢ 6 < ; 1 0 |
22 |
8 9 20 21
|
declti |
⊢ 6 < ; 1 2 |
23 |
19 22
|
gtneii |
⊢ ; 1 2 ≠ 6 |
24 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
25 |
14 24
|
neeq12i |
⊢ ( ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ ; 1 2 ≠ 6 ) |
26 |
23 25
|
mpbir |
⊢ ( dist ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
27 |
6 26
|
setsnid |
⊢ ( dist ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
28 |
18 27
|
eqtri |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
29 |
5 28
|
eqtr4di |
⊢ ( 𝐺 ∈ 𝑉 → ( dist ‘ 𝑊 ) = ( dist ‘ 𝐺 ) ) |
30 |
2 29
|
eqtr4id |
⊢ ( 𝐺 ∈ 𝑉 → 𝐷 = ( dist ‘ 𝑊 ) ) |