Metamath Proof Explorer


Theorem zlmtset

Description: Topology in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
zlmtset.1 𝐽 = ( TopSet ‘ 𝐺 )
Assertion zlmtset ( 𝐺𝑉𝐽 = ( TopSet ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmtset.1 𝐽 = ( TopSet ‘ 𝐺 )
3 tsetid TopSet = Slot ( TopSet ‘ ndx )
4 slotstnscsi ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ∧ ( TopSet ‘ ndx ) ≠ ( ·𝑖 ‘ ndx ) )
5 4 simp1i ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx )
6 3 5 setsnid ( TopSet ‘ 𝐺 ) = ( TopSet ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) )
7 4 simp2i ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
8 3 7 setsnid ( TopSet ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
9 2 6 8 3eqtri 𝐽 = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
10 eqid ( .g𝐺 ) = ( .g𝐺 )
11 1 10 zlmval ( 𝐺𝑉𝑊 = ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
12 11 fveq2d ( 𝐺𝑉 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) ) )
13 9 12 eqtr4id ( 𝐺𝑉𝐽 = ( TopSet ‘ 𝑊 ) )