Metamath Proof Explorer


Theorem zlmtset

Description: Topology in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
zlmtset.1 𝐽 = ( TopSet ‘ 𝐺 )
Assertion zlmtset ( 𝐺𝑉𝐽 = ( TopSet ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 zlmlem2.1 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmtset.1 𝐽 = ( TopSet ‘ 𝐺 )
3 tsetid TopSet = Slot ( TopSet ‘ ndx )
4 5re 5 ∈ ℝ
5 5lt9 5 < 9
6 4 5 gtneii 9 ≠ 5
7 tsetndx ( TopSet ‘ ndx ) = 9
8 scandx ( Scalar ‘ ndx ) = 5
9 7 8 neeq12i ( ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx ) ↔ 9 ≠ 5 )
10 6 9 mpbir ( TopSet ‘ ndx ) ≠ ( Scalar ‘ ndx )
11 3 10 setsnid ( TopSet ‘ 𝐺 ) = ( TopSet ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) )
12 6re 6 ∈ ℝ
13 6lt9 6 < 9
14 12 13 gtneii 9 ≠ 6
15 vscandx ( ·𝑠 ‘ ndx ) = 6
16 7 15 neeq12i ( ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) ↔ 9 ≠ 6 )
17 14 16 mpbir ( TopSet ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
18 3 17 setsnid ( TopSet ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
19 2 11 18 3eqtri 𝐽 = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
20 eqid ( .g𝐺 ) = ( .g𝐺 )
21 1 20 zlmval ( 𝐺𝑉𝑊 = ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
22 21 fveq2d ( 𝐺𝑉 → ( TopSet ‘ 𝑊 ) = ( TopSet ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) ) )
23 19 22 eqtr4id ( 𝐺𝑉𝐽 = ( TopSet ‘ 𝑊 ) )