Metamath Proof Explorer


Theorem zlmtset

Description: Topology in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses zlmlem2.1 W=ℤModG
zlmtset.1 J=TopSetG
Assertion zlmtset GVJ=TopSetW

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W=ℤModG
2 zlmtset.1 J=TopSetG
3 tsetid TopSet=SlotTopSetndx
4 slotstnscsi TopSetndxScalarndxTopSetndxndxTopSetndx𝑖ndx
5 4 simp1i TopSetndxScalarndx
6 3 5 setsnid TopSetG=TopSetGsSetScalarndxring
7 4 simp2i TopSetndxndx
8 3 7 setsnid TopSetGsSetScalarndxring=TopSetGsSetScalarndxringsSetndxG
9 2 6 8 3eqtri J=TopSetGsSetScalarndxringsSetndxG
10 eqid G=G
11 1 10 zlmval GVW=GsSetScalarndxringsSetndxG
12 11 fveq2d GVTopSetW=TopSetGsSetScalarndxringsSetndxG
13 9 12 eqtr4id GVJ=TopSetW