Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
2 |
|
zlmtset.1 |
|- J = ( TopSet ` G ) |
3 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
4 |
|
slotstnscsi |
|- ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) /\ ( TopSet ` ndx ) =/= ( .s ` ndx ) /\ ( TopSet ` ndx ) =/= ( .i ` ndx ) ) |
5 |
4
|
simp1i |
|- ( TopSet ` ndx ) =/= ( Scalar ` ndx ) |
6 |
3 5
|
setsnid |
|- ( TopSet ` G ) = ( TopSet ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
7 |
4
|
simp2i |
|- ( TopSet ` ndx ) =/= ( .s ` ndx ) |
8 |
3 7
|
setsnid |
|- ( TopSet ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
9 |
2 6 8
|
3eqtri |
|- J = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
10 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
11 |
1 10
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
12 |
11
|
fveq2d |
|- ( G e. V -> ( TopSet ` W ) = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
13 |
9 12
|
eqtr4id |
|- ( G e. V -> J = ( TopSet ` W ) ) |