| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmlem2.1 |
|- W = ( ZMod ` G ) |
| 2 |
|
zlmtset.1 |
|- J = ( TopSet ` G ) |
| 3 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 4 |
|
5re |
|- 5 e. RR |
| 5 |
|
5lt9 |
|- 5 < 9 |
| 6 |
4 5
|
gtneii |
|- 9 =/= 5 |
| 7 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
| 8 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
| 9 |
7 8
|
neeq12i |
|- ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) <-> 9 =/= 5 ) |
| 10 |
6 9
|
mpbir |
|- ( TopSet ` ndx ) =/= ( Scalar ` ndx ) |
| 11 |
3 10
|
setsnid |
|- ( TopSet ` G ) = ( TopSet ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
| 12 |
|
6re |
|- 6 e. RR |
| 13 |
|
6lt9 |
|- 6 < 9 |
| 14 |
12 13
|
gtneii |
|- 9 =/= 6 |
| 15 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
| 16 |
7 15
|
neeq12i |
|- ( ( TopSet ` ndx ) =/= ( .s ` ndx ) <-> 9 =/= 6 ) |
| 17 |
14 16
|
mpbir |
|- ( TopSet ` ndx ) =/= ( .s ` ndx ) |
| 18 |
3 17
|
setsnid |
|- ( TopSet ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 19 |
2 11 18
|
3eqtri |
|- J = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 20 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 21 |
1 20
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 22 |
21
|
fveq2d |
|- ( G e. V -> ( TopSet ` W ) = ( TopSet ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
| 23 |
19 22
|
eqtr4id |
|- ( G e. V -> J = ( TopSet ` W ) ) |