Metamath Proof Explorer


Theorem 5lt9

Description: 5 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 5lt9
|- 5 < 9

Proof

Step Hyp Ref Expression
1 5lt6
 |-  5 < 6
2 6lt9
 |-  6 < 9
3 5re
 |-  5 e. RR
4 6re
 |-  6 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 5 < 6 /\ 6 < 9 ) -> 5 < 9 )
7 1 2 6 mp2an
 |-  5 < 9