Metamath Proof Explorer


Theorem 6lt9

Description: 6 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion 6lt9
|- 6 < 9

Proof

Step Hyp Ref Expression
1 6lt7
 |-  6 < 7
2 7lt9
 |-  7 < 9
3 6re
 |-  6 e. RR
4 7re
 |-  7 e. RR
5 9re
 |-  9 e. RR
6 3 4 5 lttri
 |-  ( ( 6 < 7 /\ 7 < 9 ) -> 6 < 9 )
7 1 2 6 mp2an
 |-  6 < 9