Step |
Hyp |
Ref |
Expression |
1 |
|
5re |
|- 5 e. RR |
2 |
|
5lt9 |
|- 5 < 9 |
3 |
1 2
|
gtneii |
|- 9 =/= 5 |
4 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
5 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
6 |
4 5
|
neeq12i |
|- ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) <-> 9 =/= 5 ) |
7 |
3 6
|
mpbir |
|- ( TopSet ` ndx ) =/= ( Scalar ` ndx ) |
8 |
|
6re |
|- 6 e. RR |
9 |
|
6lt9 |
|- 6 < 9 |
10 |
8 9
|
gtneii |
|- 9 =/= 6 |
11 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
12 |
4 11
|
neeq12i |
|- ( ( TopSet ` ndx ) =/= ( .s ` ndx ) <-> 9 =/= 6 ) |
13 |
10 12
|
mpbir |
|- ( TopSet ` ndx ) =/= ( .s ` ndx ) |
14 |
|
8re |
|- 8 e. RR |
15 |
|
8lt9 |
|- 8 < 9 |
16 |
14 15
|
gtneii |
|- 9 =/= 8 |
17 |
|
ipndx |
|- ( .i ` ndx ) = 8 |
18 |
4 17
|
neeq12i |
|- ( ( TopSet ` ndx ) =/= ( .i ` ndx ) <-> 9 =/= 8 ) |
19 |
16 18
|
mpbir |
|- ( TopSet ` ndx ) =/= ( .i ` ndx ) |
20 |
7 13 19
|
3pm3.2i |
|- ( ( TopSet ` ndx ) =/= ( Scalar ` ndx ) /\ ( TopSet ` ndx ) =/= ( .s ` ndx ) /\ ( TopSet ` ndx ) =/= ( .i ` ndx ) ) |