Metamath Proof Explorer


Theorem topgrpstr

Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w
|- W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. }
Assertion topgrpstr
|- W Struct <. 1 , 9 >.

Proof

Step Hyp Ref Expression
1 topgrpfn.w
 |-  W = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. }
2 1nn
 |-  1 e. NN
3 basendx
 |-  ( Base ` ndx ) = 1
4 1lt2
 |-  1 < 2
5 2nn
 |-  2 e. NN
6 plusgndx
 |-  ( +g ` ndx ) = 2
7 2lt9
 |-  2 < 9
8 9nn
 |-  9 e. NN
9 tsetndx
 |-  ( TopSet ` ndx ) = 9
10 2 3 4 5 6 7 8 9 strle3
 |-  { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. , <. ( TopSet ` ndx ) , J >. } Struct <. 1 , 9 >.
11 1 10 eqbrtri
 |-  W Struct <. 1 , 9 >.