Metamath Proof Explorer


Theorem topgrpstr

Description: A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis topgrpfn.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
Assertion topgrpstr 𝑊 Struct ⟨ 1 , 9 ⟩

Proof

Step Hyp Ref Expression
1 topgrpfn.w 𝑊 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ }
2 1nn 1 ∈ ℕ
3 basendx ( Base ‘ ndx ) = 1
4 1lt2 1 < 2
5 2nn 2 ∈ ℕ
6 plusgndx ( +g ‘ ndx ) = 2
7 2lt9 2 < 9
8 9nn 9 ∈ ℕ
9 tsetndx ( TopSet ‘ ndx ) = 9
10 2 3 4 5 6 7 8 9 strle3 { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , + ⟩ , ⟨ ( TopSet ‘ ndx ) , 𝐽 ⟩ } Struct ⟨ 1 , 9 ⟩
11 1 10 eqbrtri 𝑊 Struct ⟨ 1 , 9 ⟩