Metamath Proof Explorer


Theorem zlmds

Description: Distance in a ZZ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017) (Proof shortened by AV, 11-Nov-2024)

Ref Expression
Hypotheses zlmlem2.1 W=ℤModG
zlmds.1 D=distG
Assertion zlmds GVD=distW

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W=ℤModG
2 zlmds.1 D=distG
3 eqid G=G
4 1 3 zlmval GVW=GsSetScalarndxringsSetndxG
5 4 fveq2d GVdistW=distGsSetScalarndxringsSetndxG
6 dsid dist=Slotdistndx
7 slotsdnscsi distndxScalarndxdistndxndxdistndx𝑖ndx
8 7 simp1i distndxScalarndx
9 6 8 setsnid distG=distGsSetScalarndxring
10 7 simp2i distndxndx
11 6 10 setsnid distGsSetScalarndxring=distGsSetScalarndxringsSetndxG
12 9 11 eqtri distG=distGsSetScalarndxringsSetndxG
13 5 12 eqtr4di GVdistW=distG
14 2 13 eqtr4id GVD=distW