Metamath Proof Explorer


Theorem zhmnrg

Description: The ZZ -module built from a normed ring is also a normed ring. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypothesis zlmlem2.1 W = ℤMod G
Assertion zhmnrg G NrmRing W NrmRing

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W = ℤMod G
2 eqid Base G = Base G
3 2 a1i G NrmRing Base G = Base G
4 1 2 zlmbas Base G = Base W
5 4 a1i G NrmRing Base G = Base W
6 eqid + G = + G
7 1 6 zlmplusg + G = + W
8 7 a1i G NrmRing + G = + W
9 8 oveqdr G NrmRing x Base G y Base G x + G y = x + W y
10 3 5 9 grppropd G NrmRing G Grp W Grp
11 eqid dist G = dist G
12 1 11 zlmds G NrmRing dist G = dist W
13 12 reseq1d G NrmRing dist G Base G × Base G = dist W Base G × Base G
14 eqid TopSet G = TopSet G
15 1 14 zlmtset G NrmRing TopSet G = TopSet W
16 5 15 topnpropd G NrmRing TopOpen G = TopOpen W
17 3 5 13 16 mspropd G NrmRing G MetSp W MetSp
18 eqid norm G = norm G
19 1 18 zlmnm G NrmRing norm G = norm W
20 5 8 grpsubpropd G NrmRing - G = - W
21 19 20 coeq12d G NrmRing norm G - G = norm W - W
22 21 12 sseq12d G NrmRing norm G - G dist G norm W - W dist W
23 10 17 22 3anbi123d G NrmRing G Grp G MetSp norm G - G dist G W Grp W MetSp norm W - W dist W
24 eqid - G = - G
25 18 24 11 isngp G NrmGrp G Grp G MetSp norm G - G dist G
26 eqid norm W = norm W
27 eqid - W = - W
28 eqid dist W = dist W
29 26 27 28 isngp W NrmGrp W Grp W MetSp norm W - W dist W
30 23 25 29 3bitr4g G NrmRing G NrmGrp W NrmGrp
31 eqid G = G
32 1 31 zlmmulr G = W
33 32 a1i G NrmRing G = W
34 5 8 33 abvpropd2 G NrmRing AbsVal G = AbsVal W
35 19 34 eleq12d G NrmRing norm G AbsVal G norm W AbsVal W
36 30 35 anbi12d G NrmRing G NrmGrp norm G AbsVal G W NrmGrp norm W AbsVal W
37 eqid AbsVal G = AbsVal G
38 18 37 isnrg G NrmRing G NrmGrp norm G AbsVal G
39 eqid AbsVal W = AbsVal W
40 26 39 isnrg W NrmRing W NrmGrp norm W AbsVal W
41 36 38 40 3bitr4g G NrmRing G NrmRing W NrmRing
42 41 ibi G NrmRing W NrmRing