Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlem2.1 |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
2
|
a1i |
⊢ ( 𝐺 ∈ NrmRing → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
4 |
1 2
|
zlmbas |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ NrmRing → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑊 ) ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
7 |
1 6
|
zlmplusg |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) |
8 |
7
|
a1i |
⊢ ( 𝐺 ∈ NrmRing → ( +g ‘ 𝐺 ) = ( +g ‘ 𝑊 ) ) |
9 |
8
|
oveqdr |
⊢ ( ( 𝐺 ∈ NrmRing ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) ) |
10 |
3 5 9
|
grppropd |
⊢ ( 𝐺 ∈ NrmRing → ( 𝐺 ∈ Grp ↔ 𝑊 ∈ Grp ) ) |
11 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
12 |
1 11
|
zlmds |
⊢ ( 𝐺 ∈ NrmRing → ( dist ‘ 𝐺 ) = ( dist ‘ 𝑊 ) ) |
13 |
12
|
reseq1d |
⊢ ( 𝐺 ∈ NrmRing → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
14 |
|
eqid |
⊢ ( TopSet ‘ 𝐺 ) = ( TopSet ‘ 𝐺 ) |
15 |
1 14
|
zlmtset |
⊢ ( 𝐺 ∈ NrmRing → ( TopSet ‘ 𝐺 ) = ( TopSet ‘ 𝑊 ) ) |
16 |
5 15
|
topnpropd |
⊢ ( 𝐺 ∈ NrmRing → ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝑊 ) ) |
17 |
3 5 13 16
|
mspropd |
⊢ ( 𝐺 ∈ NrmRing → ( 𝐺 ∈ MetSp ↔ 𝑊 ∈ MetSp ) ) |
18 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
19 |
1 18
|
zlmnm |
⊢ ( 𝐺 ∈ NrmRing → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑊 ) ) |
20 |
5 8
|
grpsubpropd |
⊢ ( 𝐺 ∈ NrmRing → ( -g ‘ 𝐺 ) = ( -g ‘ 𝑊 ) ) |
21 |
19 20
|
coeq12d |
⊢ ( 𝐺 ∈ NrmRing → ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) = ( ( norm ‘ 𝑊 ) ∘ ( -g ‘ 𝑊 ) ) ) |
22 |
21 12
|
sseq12d |
⊢ ( 𝐺 ∈ NrmRing → ( ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) ⊆ ( dist ‘ 𝐺 ) ↔ ( ( norm ‘ 𝑊 ) ∘ ( -g ‘ 𝑊 ) ) ⊆ ( dist ‘ 𝑊 ) ) ) |
23 |
10 17 22
|
3anbi123d |
⊢ ( 𝐺 ∈ NrmRing → ( ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) ⊆ ( dist ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ( ( norm ‘ 𝑊 ) ∘ ( -g ‘ 𝑊 ) ) ⊆ ( dist ‘ 𝑊 ) ) ) ) |
24 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
25 |
18 24 11
|
isngp |
⊢ ( 𝐺 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ ( ( norm ‘ 𝐺 ) ∘ ( -g ‘ 𝐺 ) ) ⊆ ( dist ‘ 𝐺 ) ) ) |
26 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
27 |
|
eqid |
⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) |
28 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
29 |
26 27 28
|
isngp |
⊢ ( 𝑊 ∈ NrmGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ MetSp ∧ ( ( norm ‘ 𝑊 ) ∘ ( -g ‘ 𝑊 ) ) ⊆ ( dist ‘ 𝑊 ) ) ) |
30 |
23 25 29
|
3bitr4g |
⊢ ( 𝐺 ∈ NrmRing → ( 𝐺 ∈ NrmGrp ↔ 𝑊 ∈ NrmGrp ) ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝐺 ) |
32 |
1 31
|
zlmmulr |
⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
33 |
32
|
a1i |
⊢ ( 𝐺 ∈ NrmRing → ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) ) |
34 |
5 8 33
|
abvpropd2 |
⊢ ( 𝐺 ∈ NrmRing → ( AbsVal ‘ 𝐺 ) = ( AbsVal ‘ 𝑊 ) ) |
35 |
19 34
|
eleq12d |
⊢ ( 𝐺 ∈ NrmRing → ( ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ↔ ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) ) |
36 |
30 35
|
anbi12d |
⊢ ( 𝐺 ∈ NrmRing → ( ( 𝐺 ∈ NrmGrp ∧ ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ NrmGrp ∧ ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) ) ) |
37 |
|
eqid |
⊢ ( AbsVal ‘ 𝐺 ) = ( AbsVal ‘ 𝐺 ) |
38 |
18 37
|
isnrg |
⊢ ( 𝐺 ∈ NrmRing ↔ ( 𝐺 ∈ NrmGrp ∧ ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ) ) |
39 |
|
eqid |
⊢ ( AbsVal ‘ 𝑊 ) = ( AbsVal ‘ 𝑊 ) |
40 |
26 39
|
isnrg |
⊢ ( 𝑊 ∈ NrmRing ↔ ( 𝑊 ∈ NrmGrp ∧ ( norm ‘ 𝑊 ) ∈ ( AbsVal ‘ 𝑊 ) ) ) |
41 |
36 38 40
|
3bitr4g |
⊢ ( 𝐺 ∈ NrmRing → ( 𝐺 ∈ NrmRing ↔ 𝑊 ∈ NrmRing ) ) |
42 |
41
|
ibi |
⊢ ( 𝐺 ∈ NrmRing → 𝑊 ∈ NrmRing ) |