Step |
Hyp |
Ref |
Expression |
1 |
|
nmmulg.x |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
nmmulg.n |
⊢ 𝑁 = ( norm ‘ 𝑅 ) |
3 |
|
nmmulg.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
4 |
|
nmmulg.t |
⊢ · = ( .g ‘ 𝑅 ) |
5 |
|
simp2 |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑀 ∈ ℤ ) |
6 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
7 |
|
nlmlmod |
⊢ ( 𝑍 ∈ NrmMod → 𝑍 ∈ LMod ) |
8 |
3
|
zlmlmod |
⊢ ( 𝑅 ∈ Abel ↔ 𝑍 ∈ LMod ) |
9 |
7 8
|
sylibr |
⊢ ( 𝑍 ∈ NrmMod → 𝑅 ∈ Abel ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Abel ) |
11 |
3
|
zlmsca |
⊢ ( 𝑅 ∈ Abel → ℤring = ( Scalar ‘ 𝑍 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ℤring = ( Scalar ‘ 𝑍 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( Base ‘ ℤring ) = ( Base ‘ ( Scalar ‘ 𝑍 ) ) ) |
14 |
6 13
|
eqtrid |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ℤ = ( Base ‘ ( Scalar ‘ 𝑍 ) ) ) |
15 |
5 14
|
eleqtrd |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) ) |
16 |
3 1
|
zlmbas |
⊢ 𝐵 = ( Base ‘ 𝑍 ) |
17 |
|
eqid |
⊢ ( norm ‘ 𝑍 ) = ( norm ‘ 𝑍 ) |
18 |
3 4
|
zlmvsca |
⊢ · = ( ·𝑠 ‘ 𝑍 ) |
19 |
|
eqid |
⊢ ( Scalar ‘ 𝑍 ) = ( Scalar ‘ 𝑍 ) |
20 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑍 ) ) = ( Base ‘ ( Scalar ‘ 𝑍 ) ) |
21 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑍 ) ) = ( norm ‘ ( Scalar ‘ 𝑍 ) ) |
22 |
16 17 18 19 20 21
|
nmvs |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑍 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( norm ‘ 𝑍 ) ‘ ( 𝑀 · 𝑋 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑍 ) ) ‘ 𝑀 ) · ( ( norm ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
23 |
15 22
|
syld3an2 |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( norm ‘ 𝑍 ) ‘ ( 𝑀 · 𝑋 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑍 ) ) ‘ 𝑀 ) · ( ( norm ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
24 |
3 2
|
zlmnm |
⊢ ( 𝑅 ∈ Abel → 𝑁 = ( norm ‘ 𝑍 ) ) |
25 |
10 24
|
syl |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → 𝑁 = ( norm ‘ 𝑍 ) ) |
26 |
25
|
fveq1d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑀 · 𝑋 ) ) = ( ( norm ‘ 𝑍 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
27 |
|
zzsnm |
⊢ ( 𝑀 ∈ ℤ → ( abs ‘ 𝑀 ) = ( ( norm ‘ ℤring ) ‘ 𝑀 ) ) |
28 |
27
|
3ad2ant2 |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( abs ‘ 𝑀 ) = ( ( norm ‘ ℤring ) ‘ 𝑀 ) ) |
29 |
12
|
fveq2d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( norm ‘ ℤring ) = ( norm ‘ ( Scalar ‘ 𝑍 ) ) ) |
30 |
29
|
fveq1d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( norm ‘ ℤring ) ‘ 𝑀 ) = ( ( norm ‘ ( Scalar ‘ 𝑍 ) ) ‘ 𝑀 ) ) |
31 |
28 30
|
eqtrd |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( abs ‘ 𝑀 ) = ( ( norm ‘ ( Scalar ‘ 𝑍 ) ) ‘ 𝑀 ) ) |
32 |
25
|
fveq1d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( ( norm ‘ 𝑍 ) ‘ 𝑋 ) ) |
33 |
31 32
|
oveq12d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( abs ‘ 𝑀 ) · ( 𝑁 ‘ 𝑋 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑍 ) ) ‘ 𝑀 ) · ( ( norm ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
34 |
23 26 33
|
3eqtr4d |
⊢ ( ( 𝑍 ∈ NrmMod ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ ( 𝑀 · 𝑋 ) ) = ( ( abs ‘ 𝑀 ) · ( 𝑁 ‘ 𝑋 ) ) ) |