Step |
Hyp |
Ref |
Expression |
1 |
|
nmmulg.x |
|- B = ( Base ` R ) |
2 |
|
nmmulg.n |
|- N = ( norm ` R ) |
3 |
|
nmmulg.z |
|- Z = ( ZMod ` R ) |
4 |
|
nmmulg.t |
|- .x. = ( .g ` R ) |
5 |
|
simp2 |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> M e. ZZ ) |
6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
7 |
|
nlmlmod |
|- ( Z e. NrmMod -> Z e. LMod ) |
8 |
3
|
zlmlmod |
|- ( R e. Abel <-> Z e. LMod ) |
9 |
7 8
|
sylibr |
|- ( Z e. NrmMod -> R e. Abel ) |
10 |
9
|
3ad2ant1 |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> R e. Abel ) |
11 |
3
|
zlmsca |
|- ( R e. Abel -> ZZring = ( Scalar ` Z ) ) |
12 |
10 11
|
syl |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ZZring = ( Scalar ` Z ) ) |
13 |
12
|
fveq2d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( Base ` ZZring ) = ( Base ` ( Scalar ` Z ) ) ) |
14 |
6 13
|
eqtrid |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ZZ = ( Base ` ( Scalar ` Z ) ) ) |
15 |
5 14
|
eleqtrd |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> M e. ( Base ` ( Scalar ` Z ) ) ) |
16 |
3 1
|
zlmbas |
|- B = ( Base ` Z ) |
17 |
|
eqid |
|- ( norm ` Z ) = ( norm ` Z ) |
18 |
3 4
|
zlmvsca |
|- .x. = ( .s ` Z ) |
19 |
|
eqid |
|- ( Scalar ` Z ) = ( Scalar ` Z ) |
20 |
|
eqid |
|- ( Base ` ( Scalar ` Z ) ) = ( Base ` ( Scalar ` Z ) ) |
21 |
|
eqid |
|- ( norm ` ( Scalar ` Z ) ) = ( norm ` ( Scalar ` Z ) ) |
22 |
16 17 18 19 20 21
|
nmvs |
|- ( ( Z e. NrmMod /\ M e. ( Base ` ( Scalar ` Z ) ) /\ X e. B ) -> ( ( norm ` Z ) ` ( M .x. X ) ) = ( ( ( norm ` ( Scalar ` Z ) ) ` M ) x. ( ( norm ` Z ) ` X ) ) ) |
23 |
15 22
|
syld3an2 |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( ( norm ` Z ) ` ( M .x. X ) ) = ( ( ( norm ` ( Scalar ` Z ) ) ` M ) x. ( ( norm ` Z ) ` X ) ) ) |
24 |
3 2
|
zlmnm |
|- ( R e. Abel -> N = ( norm ` Z ) ) |
25 |
10 24
|
syl |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> N = ( norm ` Z ) ) |
26 |
25
|
fveq1d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( N ` ( M .x. X ) ) = ( ( norm ` Z ) ` ( M .x. X ) ) ) |
27 |
|
zzsnm |
|- ( M e. ZZ -> ( abs ` M ) = ( ( norm ` ZZring ) ` M ) ) |
28 |
27
|
3ad2ant2 |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( abs ` M ) = ( ( norm ` ZZring ) ` M ) ) |
29 |
12
|
fveq2d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( norm ` ZZring ) = ( norm ` ( Scalar ` Z ) ) ) |
30 |
29
|
fveq1d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( ( norm ` ZZring ) ` M ) = ( ( norm ` ( Scalar ` Z ) ) ` M ) ) |
31 |
28 30
|
eqtrd |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( abs ` M ) = ( ( norm ` ( Scalar ` Z ) ) ` M ) ) |
32 |
25
|
fveq1d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( N ` X ) = ( ( norm ` Z ) ` X ) ) |
33 |
31 32
|
oveq12d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( ( abs ` M ) x. ( N ` X ) ) = ( ( ( norm ` ( Scalar ` Z ) ) ` M ) x. ( ( norm ` Z ) ` X ) ) ) |
34 |
23 26 33
|
3eqtr4d |
|- ( ( Z e. NrmMod /\ M e. ZZ /\ X e. B ) -> ( N ` ( M .x. X ) ) = ( ( abs ` M ) x. ( N ` X ) ) ) |