Metamath Proof Explorer


Theorem zzsnm

Description: The norm of the ring of the integers. (Contributed by Thierry Arnoux, 8-Nov-2017) (Revised by AV, 13-Jun-2019)

Ref Expression
Assertion zzsnm
|- ( M e. ZZ -> ( abs ` M ) = ( ( norm ` ZZring ) ` M ) )

Proof

Step Hyp Ref Expression
1 fvres
 |-  ( M e. ZZ -> ( ( abs |` ZZ ) ` M ) = ( abs ` M ) )
2 zringnm
 |-  ( norm ` ZZring ) = ( abs |` ZZ )
3 2 eqcomi
 |-  ( abs |` ZZ ) = ( norm ` ZZring )
4 3 fveq1i
 |-  ( ( abs |` ZZ ) ` M ) = ( ( norm ` ZZring ) ` M )
5 1 4 eqtr3di
 |-  ( M e. ZZ -> ( abs ` M ) = ( ( norm ` ZZring ) ` M ) )