Step |
Hyp |
Ref |
Expression |
1 |
|
cnring |
|- CCfld e. Ring |
2 |
|
ringmnd |
|- ( CCfld e. Ring -> CCfld e. Mnd ) |
3 |
1 2
|
ax-mp |
|- CCfld e. Mnd |
4 |
|
0z |
|- 0 e. ZZ |
5 |
|
zsscn |
|- ZZ C_ CC |
6 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
7 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
8 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
9 |
|
cnfldnm |
|- abs = ( norm ` CCfld ) |
10 |
6 7 8 9
|
ressnm |
|- ( ( CCfld e. Mnd /\ 0 e. ZZ /\ ZZ C_ CC ) -> ( abs |` ZZ ) = ( norm ` ZZring ) ) |
11 |
10
|
eqcomd |
|- ( ( CCfld e. Mnd /\ 0 e. ZZ /\ ZZ C_ CC ) -> ( norm ` ZZring ) = ( abs |` ZZ ) ) |
12 |
3 4 5 11
|
mp3an |
|- ( norm ` ZZring ) = ( abs |` ZZ ) |