| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnring |  |-  CCfld e. Ring | 
						
							| 2 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 3 | 1 2 | ax-mp |  |-  CCfld e. Mnd | 
						
							| 4 |  | 0z |  |-  0 e. ZZ | 
						
							| 5 |  | zsscn |  |-  ZZ C_ CC | 
						
							| 6 |  | df-zring |  |-  ZZring = ( CCfld |`s ZZ ) | 
						
							| 7 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 8 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 9 |  | cnfldnm |  |-  abs = ( norm ` CCfld ) | 
						
							| 10 | 6 7 8 9 | ressnm |  |-  ( ( CCfld e. Mnd /\ 0 e. ZZ /\ ZZ C_ CC ) -> ( abs |` ZZ ) = ( norm ` ZZring ) ) | 
						
							| 11 | 10 | eqcomd |  |-  ( ( CCfld e. Mnd /\ 0 e. ZZ /\ ZZ C_ CC ) -> ( norm ` ZZring ) = ( abs |` ZZ ) ) | 
						
							| 12 | 3 4 5 11 | mp3an |  |-  ( norm ` ZZring ) = ( abs |` ZZ ) |