Metamath Proof Explorer


Theorem zringnm

Description: The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019)

Ref Expression
Assertion zringnm norm ring = abs

Proof

Step Hyp Ref Expression
1 cnring fld Ring
2 ringmnd fld Ring fld Mnd
3 1 2 ax-mp fld Mnd
4 0z 0
5 zsscn
6 df-zring ring = fld 𝑠
7 cnfldbas = Base fld
8 cnfld0 0 = 0 fld
9 cnfldnm abs = norm fld
10 6 7 8 9 ressnm fld Mnd 0 abs = norm ring
11 10 eqcomd fld Mnd 0 norm ring = abs
12 3 4 5 11 mp3an norm ring = abs