Metamath Proof Explorer


Theorem zringnm

Description: The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019)

Ref Expression
Assertion zringnm ( norm ‘ ℤring ) = ( abs ↾ ℤ )

Proof

Step Hyp Ref Expression
1 cnring fld ∈ Ring
2 ringmnd ( ℂfld ∈ Ring → ℂfld ∈ Mnd )
3 1 2 ax-mp fld ∈ Mnd
4 0z 0 ∈ ℤ
5 zsscn ℤ ⊆ ℂ
6 df-zring ring = ( ℂflds ℤ )
7 cnfldbas ℂ = ( Base ‘ ℂfld )
8 cnfld0 0 = ( 0g ‘ ℂfld )
9 cnfldnm abs = ( norm ‘ ℂfld )
10 6 7 8 9 ressnm ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( abs ↾ ℤ ) = ( norm ‘ ℤring ) )
11 10 eqcomd ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( norm ‘ ℤring ) = ( abs ↾ ℤ ) )
12 3 4 5 11 mp3an ( norm ‘ ℤring ) = ( abs ↾ ℤ )