Description: The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zringnm | ⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnring | ⊢ ℂfld ∈ Ring | |
| 2 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
| 3 | 1 2 | ax-mp | ⊢ ℂfld ∈ Mnd |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 6 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
| 7 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 8 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 9 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
| 10 | 6 7 8 9 | ressnm | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( abs ↾ ℤ ) = ( norm ‘ ℤring ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( norm ‘ ℤring ) = ( abs ↾ ℤ ) ) |
| 12 | 3 4 5 11 | mp3an | ⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |