Description: The norm (function) for a ring of integers is the absolute value function (restricted to the integers). (Contributed by AV, 13-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | zringnm | ⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnring | ⊢ ℂfld ∈ Ring | |
2 | ringmnd | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Mnd ) | |
3 | 1 2 | ax-mp | ⊢ ℂfld ∈ Mnd |
4 | 0z | ⊢ 0 ∈ ℤ | |
5 | zsscn | ⊢ ℤ ⊆ ℂ | |
6 | df-zring | ⊢ ℤring = ( ℂfld ↾s ℤ ) | |
7 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
8 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
9 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
10 | 6 7 8 9 | ressnm | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( abs ↾ ℤ ) = ( norm ‘ ℤring ) ) |
11 | 10 | eqcomd | ⊢ ( ( ℂfld ∈ Mnd ∧ 0 ∈ ℤ ∧ ℤ ⊆ ℂ ) → ( norm ‘ ℤring ) = ( abs ↾ ℤ ) ) |
12 | 3 4 5 11 | mp3an | ⊢ ( norm ‘ ℤring ) = ( abs ↾ ℤ ) |