Metamath Proof Explorer


Theorem ressnm

Description: The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses ressnm.1 H=G𝑠A
ressnm.2 B=BaseG
ressnm.3 0˙=0G
ressnm.4 N=normG
Assertion ressnm GMnd0˙AABNA=normH

Proof

Step Hyp Ref Expression
1 ressnm.1 H=G𝑠A
2 ressnm.2 B=BaseG
3 ressnm.3 0˙=0G
4 ressnm.4 N=normG
5 1 2 ressbas2 ABA=BaseH
6 5 3ad2ant3 GMnd0˙AABA=BaseH
7 2 fvexi BV
8 7 ssex ABAV
9 eqid distG=distG
10 1 9 ressds AVdistG=distH
11 8 10 syl ABdistG=distH
12 11 3ad2ant3 GMnd0˙AABdistG=distH
13 eqidd GMnd0˙AABx=x
14 1 2 3 ress0g GMnd0˙AAB0˙=0H
15 12 13 14 oveq123d GMnd0˙AABxdistG0˙=xdistH0H
16 6 15 mpteq12dv GMnd0˙AABxAxdistG0˙=xBaseHxdistH0H
17 4 2 3 9 nmfval N=xBxdistG0˙
18 17 reseq1i NA=xBxdistG0˙A
19 resmpt ABxBxdistG0˙A=xAxdistG0˙
20 18 19 eqtrid ABNA=xAxdistG0˙
21 20 3ad2ant3 GMnd0˙AABNA=xAxdistG0˙
22 eqid normH=normH
23 eqid BaseH=BaseH
24 eqid 0H=0H
25 eqid distH=distH
26 22 23 24 25 nmfval normH=xBaseHxdistH0H
27 26 a1i GMnd0˙AABnormH=xBaseHxdistH0H
28 16 21 27 3eqtr4d GMnd0˙AABNA=normH